Do you want to publish a course? Click here

Wreath products and proportions of periodic points

134   0   0.0 ( 0 )
 Added by Thomas Tucker J
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Let $varphi: {mathbb P}^1 longrightarrow {mathbb P}^1$ be a rational map of degree greater than one defined over a number field $k$. For each prime ${mathfrak p}$ of good reduction for $varphi$, we let $varphi_{mathfrak p}$ denote the reduction of $varphi$ modulo ${mathfrak p}$. A random map heuristic suggests that for large ${mathfrak p}$, the proportion of periodic points of $varphi_{mathfrak p}$ in ${mathbb P}^1({mathfrak o}_k/{mathfrak p})$ should be small. We show that this is indeed the case for many rational functions $varphi$.



rate research

Read More

We develop a theory of semidirect products of partial groups and localities. Our concepts generalize the notions of direct products of partial groups and localities, and of semidirect products of groups.
It is an open problem whether definability in Propositional Dynamic Logic (PDL) on forests is decidable. Based on an algebraic characterization by Bojanczyk, et. al.,(2012) in terms of forest algebras, Straubing (2013) described an approach to PDL based on a k-fold iterated distributive law. A proof that all languages satisfying such a k-fold iterated distributive law are in PDL would settle decidability of PDL. We solve this problem in the case k=2: All languages recognized by forest algebras satisfying a 2-fold iterated distributive law are in PDL. Furthermore, we show that this class is decidable. This provides a novel nontrivial decidable subclass of PDL, and demonstrates the viability of the proposed approach to deciding PDL in general.
Let $k$ be a number field. In the spirit of a result by Yongqi Liang, we relate the arithmetic of rational points over finite extensions of $k$ to that of zero-cycles over $k$ for Kummer varieties over $k$. For example, for any Kummer variety $X$ over $k$, we show that if the Brauer-Manin obstruction is the only obstruction to the Hasse principle for rational points on $X$ over all finite extensions of $k$, then the ($2$-primary) Brauer-Manin obstruction is the only obstruction to the Hasse principle for zero-cycles of any given odd degree on $X$ over $k$. We also obtain similar results for products of Kummer varieties, K3 surfaces and rationally connected varieties.
70 - Adrien Le Boudec 2020
We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C wr F$, where $C$ is a finite group and $F$ a non-abelian free group.
Let $m$ be a positive integer and let $Omega$ be a finite set. The $m$-closure of $Gle$Sym$(Omega)$ is the largest permutation group on $Omega$ having the same orbits as $G$ in its induced action on the Cartesian product $Omega^m$. The exact formula for the $m$-closure of the wreath product in product action is given. As a corollary, a sufficient condition is obtained for this $m$-closure to be included in the wreath product of the $m$-closures of the factors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا