No Arabic abstract
We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on the $2+1$-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaborations. The well-defined quark masses in the overlap fermion formalism and the clear valence quark mass dependence of meson masses observed from the calculation facilitate a direct derivation of physical current quark masses through a global fit to the lattice data, which incorporates $O(a^2)$ and $O(m_c^4a^4)$ corrections, chiral extrapolation, and quark mass interpolation. Using the physical masses of $D_s$, $D_s^*$ and $J/psi$ as inputs, Sommers scale parameter $r_0$ and the masses of charm quark and strange quark in the $overline{rm MS}$ scheme are determined to be $r_0=0.465(4)(9)$ fm, $m_c^{overline{rm MS}}(2,{rm GeV})=1.118(6)(24)$ GeV (or $m_c^{overline{rm MS}}(m_c)=1.304(5)(20)$ GeV), and $m_s^{overline{rm MS}}(2,{rm GeV})=0.101(3)(6),{rm GeV}$, respectively. Furthermore, we observe that the mass difference of the vector meson and the pseudoscalar meson with the same valence quark content is proportional to the reciprocal of the square root of the valence quark masses. The hyperfine splitting of charmonium, $M_{J/psi}-M_{eta_c}$, is determined to be 119(2)(7) MeV, which is in good agreement with the experimental value. We also predict the decay constant of $D_s$ to be $f_{D_s}=254(2)(4)$ MeV. The masses of charmonium $P$-wave states $chi_{c0}, chi_{c1}$ and $h_c$ are also in good agreement with experiments.
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $overline{text{MS}}$-renormalized masses are $m_u(2~text{GeV}) = 2.130(41)$~MeV, $m_d(2~text{GeV}) = 4.675(56)$~MeV, $m_s(2~text{GeV}) = 92.47(69)$~MeV, $m_c(3~text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $overline{Lambda}_text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $mu_pi^2 = 0.05(22)~text{GeV}^2$, and $mu_G^2(m_b)=0.38(2)~text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method.
The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to $beta=3.9$, $beta=4.05$ and $beta=4.2$ with $r_0/a=5.22(2)$, $r_0/a=6.61(3)$ and $r_0/a=8.31(5)$ respectively. %spacings $a=0.0855(5)$ and $a=0.0667(3)$ determined from the pion decay constant. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.
We take a new approach to determine the scale parameter $r_0$, the physical masses of strange and charm quarks through a global fit which incorporates continuum extrapolation, chiral extrapolation and quark mass interpolation to the lattice data. The charmonium and charm-strange meson spectrum are calculated with overlap valence quarks on $2+1$-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaboration. We use the masses of $D_s$, $D_s^*$ and $J/psi$ as inputs and obtain $m_c^{overline{rm MS}}(2,{rm GeV})=1.110(24),{rm GeV}$, $m_s^{overline{rm MS}}(2,{rm GeV})=0.104(9),{rm GeV}$ and $r_0=0.458(11),{rm fm}$. Subsequently, the hyperfine-splitting of charmonium and $f_{D_s}$ are predicted to be $112(5),{rm MeV}$ and $254(5),{rm MeV}$, respectively.
We present a progress report on our calculation of the decay constants $f_B$ and $f_{B_s}$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-mass ensemble at all but the smallest lattice spacing, 0.03 fm. This range of parameters provides excellent control of the continuum extrapolation to zero lattice spacing and of heavy-quark discretization errors. Finally, using the heavy-quark effective theory expansion we present a method of extracting from the same correlation functions the charm- and bottom-quark masses as well as some low-energy constants appearing in the heavy-quark expansion.
Lattice determinations of quark mass have made significant progress in the last few years. I will review recent advances in calculations of charm and bottom mass, which are near to achieving percent-level precision and with fully controlled systematics. Precise knowledge of these parameters is of particular interest for precision Higgs studies at future accelerators.