We study the dynamics of two kinds of entanglement, and there interplay. On one hand, the intrinsic entanglement within a central system composed by three two level atoms, and measured by multipartite concurrence, on the other, the entanglement between the central system and a cavity, acting as an environment, and measured with purity. Using dipole-dipole and Ising interactions between atoms we propose two Hamiltonians, a homogeneous and a quasi-homogeneous one. We find an upper bound for concurrence as a function of purity, associated to the evolution of the $W$ state. A lower bound is also observed for the homogeneous case. In both situations, we show the existence of critical values of the interaction, for which the dynamics of entanglement seem complex.