No Arabic abstract
In this article, we address the challenges of transmitter-receiver isolation in emph{mobile full-duplex devices}, building on shared-antenna based transceiver architecture. Firstly, self-adaptive analog RF cancellation circuitry is required, since the capability to track time-varying self-interference coupling characteristics is of utmost importance in mobile devices. In addition, novel adaptive nonlinear DSP methods are also required for final self-interference suppression at digital baseband, since mobile-scale devices typically operate under highly nonlinear low-cost RF components. In addition to describing above kind of advanced circuit and signal processing solutions, comprehensive RF measurement results from a complete demonstrator implementation are also provided, evidencing beyond 40~dB of active RF cancellation over an 80 MHz waveform bandwidth with a highly nonlinear transmitter power amplifier. Measured examples also demonstrate the good self-healing characteristics of the developed control loop against fast changes in the coupling channel. Furthermore, when complemented with nonlinear digital cancellation processing, the residual self-interference level is pushed down to the noise floor of the demonstration system, despite the harsh nonlinear nature of the self-interference. These findings indicate that deploying the full-duplex principle can indeed be feasible also in mobile devices, and thus be one potential technology in, e.g., 5G and beyond radio systems.
Although in cellular networks full-duplex and dynamic time-division duplexing promise increased spectrum efficiency, their potential is so far challenged by increased interference. While previous studies have shown that self-interference can be suppressed to a sufficient level, we show that the cross-link interference for both duplexing modes, especially from base station to base station, is the remaining challenge in multi-cell networks, restricting the uplink performance. Using beamforming techniques of low-complexity, we show that this interference can be mitigated, and that full-duplex and dynamic time-division duplexing can substantially increase the capacity of multi-cell networks. Our results suggest that if we can control the cross link interference in full-duplex, then we can almost double the multi cell network capacity as well as user throughput. Therefore, the techniques in this paper have the potentiality to enable a smooth introduction of full-duplex into cellular systems.
Mobile traffic is projected to increase 1000 times from 2010 to 2020. This poses significant challenges on the 5th generation (5G) wireless communication system design, including network structure, air interface, key transmission schemes, multiple access, and duplexing schemes. In this paper, full duplex networking issues are discussed, aiming to provide some insights on the design and possible future deployment for 5G. Particularly, the interference scenarios in full duplex are analyzed, followed by discussions on several candidate interference mitigation approaches, interference proof frame structures, transceiver structures for channel reciprocity recovery, and super full duplex base station where each sector operates in time division duplex (TDD) mode. The extension of TDD and frequency division duplex (FDD) to full duplex is also examined. It is anticipated that with future standardization and deployment of full duplex systems, TDD and FDD will be harmoniously integrated, supporting all the existing half duplex mobile phones efficiently, and leading to a substantially enhanced 5G system performance.
The hybrid half-duplex/full-duplex (HD/FD) relaying scheme is an effective paradigm to overcome the negative effects of the self-interference incurred by the full-duplex (FD) mode. However, traditional hybrid HD/FD scheme does not consider the diversity gain incurred by the multiple antennas of the FD node when the system works in the HD mode, leading to the waste of the system resources. In this paper, we propose a new hybrid HD/FD relaying scheme, which utilizes both the antennas of the FD relay node for reception and transmission when the system works in the HD mode. With multiple antennas, the maximum ratio combining/maximum ratio transmission is adopted to process the signals at the relay node. Based on this scheme, we derive the exact closed-form system outage probability and conduct various numerical simulations. The results show that the proposed scheme remarkably improves the system outage performance over the traditional scheme, and demonstrate that the proposed scheme can more effectively alleviate the adverse effects of the residual self-interference.
We propose a new adversarial attack on frequency-hopping based wireless communication between two users, namely Alice and Bob. In this attack, the adversary, referred to as Eve, instantaneously modifies the transmitted signal by Alice before forwarding it to Bob within the symbol-period. We show that this attack forces Bob to incorporate Eves signal in the decoding process; otherwise, treating it as noise would further degrade the performance akin to jamming. Through this attack, we show that Eve can convert a slow-fading channel between Alice and Bob to a rapid-fading one by modifying every transmitted symbol independently. As a result, neither pilot-assisted coherent detection techniques nor blind-detection methods are directly applicable as countermeasures. As potential mitigation strategies, we explore the applicability of frequency-hopping along with (i) On-Off keying (OOK) and (ii) Binary Frequency-Shift-Keying (FSK) as modulation schemes. In the case of OOK, the attacker attempts to introduce deep-fades on the tone carrying the information bit, whereas in the case of BFSK, the attacker pours comparable energy levels on the tones carrying bit-$0$ and bit-$1$, thereby degrading the performance. Based on extensive analyses and experimental results, we show that (i) when using OOK, Bob must be equipped with a large number of receive antennas to reliably detect Alices signal, and (ii) when using BFSK, Alice and Bob must agree upon a secret-key to randomize the location of the tones carrying the bits, in addition to randomizing the carrier-frequency of communication.
This letter proposes a new full-duplex (FD) secrecy communication scheme for the unmanned aerial vehicle (UAV) and investigates its optimal design to achieve the maximum energy efficiency (EE) of the UAV. Specifically, the UAV receives the confidential information from a ground source and meanwhile sends jamming signals to interfere with a potential ground eavesdropper. As the UAV has limited on-board energy in practice, we aim to maximize the EE for its secrecy communication, by jointly optimizing the UAV trajectory and the source/UAV transmit/jamming powers over a finite flight period with given initial and final locations. Although the problem is difficult to solve, we propose an efficient iterative algorithm to obtain its suboptimal solution. Simulation results show that the proposed joint design can significantly improve the EE of UAV secrecy communication, as compared to various benchmark schemes.