Orbit analysis of a geostationary gravitational wave interferometer detector array


Abstract in English

We analyze the trajectories of three geostationary satellites forming the GEOstationary GRAvitational Wave Interferometer (GEOGRAWI)~cite{tinto}, a space-based laser interferometer mission aiming to detect and study gravitational radiation in the ($10^{-4} - 10$) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellations three arms with respect to a chosen reference frame, and the time changes of the triangles enclosed angles. We find that, during the time between two consecutive station-keeping maneuvers (about two weeks), the relative variations of the inter-satellite distances do not exceed a value of $0.05$ percent, while the relative velocities between pairs of satellites remain smaller than about $0.7 {rm m/s}$. In addition, we find the angles made by the arms of the triangle with the equatorial plane to be periodic functions of time whose amplitudes grow linearly with time; the maximum variations experienced by these angles as well as by those within the triangle remain smaller than $3$ arc-minutes, while the East-West angular variations of the three arms remain smaller than about $15$ arc-minutes during the two-weeks period. The relatively small variations of these orbit parameters result into a set of system functional and performance requirements that are less stringent than those characterizing an interplanetary mission.

Download