Do you want to publish a course? Click here

Orbit analysis of a geostationary gravitational wave interferometer detector array

176   0   0.0 ( 0 )
 Added by Massimo Tinto
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the trajectories of three geostationary satellites forming the GEOstationary GRAvitational Wave Interferometer (GEOGRAWI)~cite{tinto}, a space-based laser interferometer mission aiming to detect and study gravitational radiation in the ($10^{-4} - 10$) Hz band. The combined effects of the gravity fields of the Earth, the Sun and the Moon make the three satellites deviate from their nominally stationary, equatorial and equilateral configuration. Since changes in the satellites relative distances and orientations could negatively affect the precision of the laser heterodyne measurements, we have derived the time-dependence of the inter-satellite distances and velocities, the variations of the polar angles made by the constellations three arms with respect to a chosen reference frame, and the time changes of the triangles enclosed angles. We find that, during the time between two consecutive station-keeping maneuvers (about two weeks), the relative variations of the inter-satellite distances do not exceed a value of $0.05$ percent, while the relative velocities between pairs of satellites remain smaller than about $0.7 {rm m/s}$. In addition, we find the angles made by the arms of the triangle with the equatorial plane to be periodic functions of time whose amplitudes grow linearly with time; the maximum variations experienced by these angles as well as by those within the triangle remain smaller than $3$ arc-minutes, while the East-West angular variations of the three arms remain smaller than about $15$ arc-minutes during the two-weeks period. The relatively small variations of these orbit parameters result into a set of system functional and performance requirements that are less stringent than those characterizing an interplanetary mission.

rate research

Read More

129 - Mengxu Liu , Biping Gong 2020
The gravitational wave (GW) has opened a new window to the universe beyond the electromagnetic spectrum. Since 2015, dozens of GW events have been caught by the ground-based GW detectors through laser interferometry. However, all the ground-based detectors are L-shaped Michelson interferometers, with very limited directional response to GW. Here we propose a three-dimensional (3-D) laser interferometer detector in the shape of a regular triangular pyramid, which has more spherically symmetric antenna pattern. Moreover, the new configuration corresponds to much stronger constraints on parameters of GW sources, and is capable of constructing null-streams to get rid of the signal-like noise events. A 3-D detector of kilometer scale of such kind would shed new light on the joint search of GW and electromagnetic emission.
Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
We study a cross-shaped cavity filled with superfluid $^4$He as a prototype resonant-mass gravitational wave detector. Using a membrane and a re-entrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-$Q$ acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of $8 times 10^{-19}$ Hz$^{-1/2}$ to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz/bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for GWs in the 1-30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model.
The upcoming European design study `Einstein gravitational-wave Telescope represents the first step towards a substantial, international effort for the design of a third-generation interferometric gravitational wave detector. It is generally believed that third-generation instruments might not be installed into existing infrastructures but will provoke a new search for optimal detector sites. Consequently, the detector design could be subject to fewer constraints than the on-going design of the second generation instruments. In particular, it will be prudent to investigate alternatives to the traditional L-shaped Michelson interferometer. In this article, we review an old proposal to use three Michelson interferometers in a triangular configuration. We use this example of a triple Michelson interferometer to clarify the terminology and will put this idea into the context of more recent research on interferometer technologies. Furthermore the benefits of a triangular detector will be used to motivate this design as a good starting point for a more detailed research effort towards a third-generation gravitational wave detector.
168 - T. Akutsu , M. Ando , K. Arai 2018
The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Telescope), a new GW detector with two 3-km baseline arms arranged in the shape of an L, located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan. KAGRAs design is similar to those of the second generations such as Advanced LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire mirrors. This low temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered as an important feature for the third generation GW detector concept (e.g. Einstein Telescope of Europe or Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW detector based on laser interferometry. The installation and commissioning of KAGRA is underway and its cryogenic systems have been successfully tested in May, 2018. KAGRAs first observation run is scheduled in late 2019, aiming to join the third observation run (O3) of the advanced LIGO/Virgo network. In this work, we describe a brief history of KAGRA and highlights of main feature. We also discuss the prospects of GW observation with KAGRA in the era of O3. When operating along with the existing GW detectors, KAGRA will be helpful to locate a GW source more accurately and to determine the source parameters with higher precision, providing information for follow-up observations of a GW trigger candidate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا