Do you want to publish a course? Click here

A note on the propagation of quantized vortex rings through a quantum turbulence tangle: Energy transport or energy dissipation?

114   0   0.0 ( 0 )
 Added by Jason Laurie
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high resolution numerical simulations we examine the validity of simple estimates of the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately $75%$ of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation.



rate research

Read More

Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii $R$ in superfluid $^4$He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value $500{rm ,cm}^{-2} R^{-1}$ independent of the injected density. This is due to collisions between rings causing piling-up of many other vortex rings. Both observations are in quantitative agreement with our theory.
99 - J. Gao , W. Guo , S. Yui 2018
There are two commonly discussed forms of quantum turbulence in superfluid $^4$He above 1K: in one there is a random tangle of quantizes vortex lines, existing in the presence of a non-turbulent normal fluid; in the second there is a coupled turbulent motion of the two fluids, often exhibiting quasi-classical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, $L$, in the former case is often described by the equation $dL/dt=-chi_2 (kappa/2pi)L^2$, where $kappa$ is the quantum of circulation, and $chi_2$ is a dimensionless parameter of order unity. The decay of total turbulent energy, $E$, in the second case is often characterized by an effective kinematic viscosity, $ u$, such that $dE/dt=- u kappa^2 L^2$. We present new values of $chi_2$ derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarise what is presently known about the values of $ u$ from experiment, and we present a brief introductory discussion of the relationship between $chi_2$ and $ u$, leaving a more detailed discussion to a later paper.
108 - D. Drosdoff , A. Widom , J. Swain 2009
Recent studies of turbulence in superfluid Helium indicate that turbulence in quantum fluids obeys a Kolmogorov scaling law. Such a law was previously attributed to classical solutions of the Navier-Stokes equations of motion. It is suggested that turbulence in all fluids is due to quantum fluid mechanical effects. Employing a field theoretical view of the fluid flow velocity, vorticity appears as quantum filamentary strings. This in turn leads directly to the Kolmogorov critical indices for the case of fully developed turbulence.
376 - J. J. Hosio , V. B. Eltsov , 2012
We report on direct measurements of the energy dissipated in the spin-up of the superfluid component of 3He-B. A vortex-free sample is prepared in a cylindrical container, where the normal component rotates at constant angular velocity. At a temperature of 0.20Tc, seed vortices are injected into the system using the shear-flow instability at the interface between 3He-B and 3He-A. These vortices interact and create a turbulent burst, which sets a propagating vortex front into motion. In the following process, the free energy stored in the initial vortex-free state is dissipated leading to the emission of thermal excitations, which we observe with a bolometric measurement. We find that the turbulent front contains less than the equilibrium number of vortices and that the superfluid behind the front is partially decoupled from the reference frame of the container. The final equilibrium state is approached in the form of a slow laminar spin-up as demonstrated by the slowly decaying tail of the thermal signal.
We demonstrate an inverse energy cascade in a minimal model of forced 2D quantum vortex turbulence. We simulate the Gross-Pitaevskii equation for a moving superfluid subject to forcing by a stationary grid of obstacle potentials, and damping by a stationary thermal cloud. The forcing injects large amounts of vortex energy into the system at the scale of a few healing lengths. A regime of forcing and damping is identified where vortex energy is efficiently transported to large length scales via an inverse energy cascade associated with the growth of clusters of same-circulation vortices, a Kolmogorov scaling law in the kinetic energy spectrum over a substantial inertial range, and spectral condensation of kinetic energy at the scale of the system size. Our results provide clear evidence that the inverse energy cascade phenomenon, previously observed in a diverse range of classical systems, can also occur in quantum fluids.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا