No Arabic abstract
The remarkable scientific return and legacy of LSST, in the era that it will define, will not only be realized in the breakthrough science that will be achieved with catalog data. This Big Data survey will shape the way the entire astronomical community advances -- or fails to embrace -- new ways of approaching astronomical research and data. In this white paper, we address the NRC template questions 4,5,6,8 and 9, with a focus on the unique challenges for smaller, and often under-resourced, institutions, including institutions dedicated to underserved minority populations, in the efficient and effective use of LSST data products to maximize LSSTs scientific return.
In todays mailing, Hogg et al. propose image modeling techniques to maintain 10-ppm-level precision photometry in Kepler data with only two working reaction wheels. While these results are relevant to many scientific goals for the repurposed mission, all modeling efforts so far have used a toy model of the Kepler telescope. Because the two-wheel performance of Kepler remains to be determined, we advocate for the consideration of an alternate strategy for a >1 year program that maximizes the science return from the low-torque fields across the ecliptic plane. Assuming we can reach the precision of the original Kepler mission, we expect to detect 800 new planet candidates in the first year of such a mission. Our proposed strategy has benefits for transit timing variation and transit duration variation studies, especially when considered in concert with the future TESS mission. We also expect to help address the first key science goal of Kepler: the frequency of planets in the habitable zone as a function of spectral type.
The study examined the participation of female students of South Eastern Nigerian tertiary institutions in Information and Communication Technologies (ICTs). The study discussed the attendant gender divide in ICTs participation, reasons for low female participation in ICT, consequences of not bridging the divide and ways of encouraging female participation in ICT. A structured questionnaire was used to elicit information from respondents. A multi stage random sampling technique was used in the selection of respondents. One hundred and thirty six (136) undergraduate female students of tertiary institutions in South Eastern Nigeria constituted the study sample. Data collected was analysed using descriptive statistics. Findings suggest that high cost of ICT and high level of male dominance, which made females think that ICT is for males were the major reasons for low female participation in ICT. Reducing the cost of Information Technology, and parental involvement in their children selection choice of study were suggested to encourage female participation in Information and Communication Technologies.
Ensuring fairness in computational problems has emerged as a $key$ topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It $is$ possible to incorporate fairness in computational problems from several perspectives, such as using optimization, game-theoretic or machine learning frameworks. In this paper we address the problem of incorporation of fairness from a $combinatorial$ $optimization$ perspective. We formulate a combinatorial optimization framework, suitable for analysis by researchers in approximation algorithms and related areas, that incorporates fairness in maximum coverage problems as an interplay between $two$ conflicting objectives. Fairness is imposed in coverage by using coloring constraints that $minimizes$ the discrepancies between number of elements of different colors covered by selected sets; this is in contrast to the usual discrepancy minimization problems studied extensively in the literature where (usually two) colors are $not$ given $a$ $priori$ but need to be selected to minimize the maximum color discrepancy of $each$ individual set. Our main results are a set of randomized and deterministic approximation algorithms that attempts to $simultaneously$ approximate both fairness and coverage in this framework.
Keplers immense photometric precision to date was maintained through satellite stability and precise pointing. In this white paper, we argue that image modeling--fitting the Kepler-downlinked raw pixel data--can vastly improve the precision of Kepler in pointing-degraded two-wheel mode. We argue that a non-trivial modeling effort may permit continuance of photometry at 10-ppm-level precision. We demonstrate some baby steps towards precise models in both data-driven (flexible) and physics-driven (interpretably parameterized) modes. We demonstrate that the expected drift or jitter in positions in the two-weel era will help with constraining calibration parameters. In particular, we show that we can infer the device flat-field at higher than pixel resolution; that is, we can infer pixel-to-pixel variations in intra-pixel sensitivity. These results are relevant to almost any scientific goal for the repurposed mission; image modeling ought to be a part of any two-wheel repurpose for the satellite. We make other recommendations for Kepler operations, but fundamentally advocate that the project stick with its core mission of finding and characterizing Earth analogs. [abridged]
This White Paper highlights the role Primarily Undergraduate Institutions (PUIs) play within the astronomy profession, addressing issues related to employment, resources and support, research opportunities and productivity, and educational and societal impacts, among others. Astronomers working at PUIs are passionate about teaching and mentoring undergraduate students through substantive astronomy experiences, all while working to continue research programs that contribute to the advancement of the professional field of astronomy. PUIs are where the majority of undergraduate students pursue post-secondary education, and as such, understanding the unique challenges and opportunities associated with PUIs is critical to fostering an inclusive astronomy community throughout the next decade. We provide a view of the profession as lived and experienced by faculty and students of PUIs, while highlighting the unique opportunities, challenges, and obstacles routinely faced. A variety of recommendations are outlined to provide the supporting structures and resources needed for astronomy to thrive at PUIs over the next decade and beyond - a critical step for a profession focused on fostering and maintaining an inclusive, supportive, and diverse community.