We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface.