Do you want to publish a course? Click here

The Most Luminous Galaxies Discovered by WISE

167   0   0.0 ( 0 )
 Added by Chao-Wei Tsai
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 20 WISE-selected galaxies with bolometric luminosities L_bol > 10^14 L_sun, including five with infrared luminosities L_IR = L(rest 8-1000 micron) > 10^14 L_sun. These extremely luminous infrared galaxies, or ELIRGs, were discovered using the W1W2-dropout selection criteria which requires marginal or non-detections at 3.4 and 4.6 micron (W1 and W2, respectively) but strong detections at 12 and 22 micron in the WISE survey. Their spectral energy distributions are dominated by emission at rest-frame 4-10 micron, suggesting that hot dust with T_d ~ 450K is responsible for the high luminosities. These galaxies are likely powered by highly obscured AGNs, and there is no evidence suggesting these systems are beamed or lensed. We compare this WISE-selected sample with 116 optically selected quasars that reach the same L_bol level, corresponding to the most luminous unobscured quasars in the literature. We find that the rest-frame 5.8 and 7.8 micron luminosities of the WISE-selected ELIRGs can be 30-80% higher than that of the unobscured quasars. The existence of AGNs with L_bol > 10^14 L_sun at z > 3 suggests that these supermassive black holes are born with large mass, or have very rapid mass assembly. For black hole seed masses ~ 10^3 M_sun, either sustained super-Eddington accretion is needed, or the radiative efficiency must be <15%, implying a black hole with slow spin, possibly due to chaotic accretion.



rate research

Read More

271 - F. Vito , W.N. Brandt , D. Stern 2017
Hot Dust-Obscured Galaxies (Hot DOGs) are hyperluminous ($L_{mathrm{8-1000,mu m}}>10^{13},mathrm{L_odot}$) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most-luminous ($L_{mathrm{bol}}gtrsim10^{14}, L_odot$) known Hot DOGs at $z=2-4.6$. Five of them are covered by long-exposure ($10-70$ ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116$-$0505) is a Compton-thick candidate, with column density $N_H=(1.0-1.5)times10^{24},mathrm{cm^{-2}}$ derived from X-ray spectral fitting. The remaining 15 Hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 is individually detected; therefore we applied a stacking analysis to investigate their average emission. From hardness-ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be log$N_H,mathrm{[cm^{-2}]}>23.5$ and $L_Xgtrsim10^{44},mathrm{erg,cm^{-2},s^{-1}}$, which are consistent with results for individually detected sources. We also investigated the $L_X-L_{6mumathrm{m}}$ and $L_X-L_{bol}$ relations, finding hints that Hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured QSOs are needed to derive solid conclusions.
We present the photometric properties of a sample of infrared (IR) bright dust obscured galaxies (DOGs). Combining wide and deep optical images obtained with the Hyper Suprime-Cam (HSC) on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer (WISE), we discovered 48 DOGs with $i - K_mathrm{s} > 1.2$ and $i - [22] > 7.0$, where $i$, $K_mathrm{s}$, and [22] represent AB magnitude in the $i$-band, $K_mathrm{s}$-band, and 22 $mu$m, respectively, in the GAMA 14hr field ($sim$ 9 deg$^2$). Among these objects, 31 ($sim$ 65 %) show power-law spectral energy distributions (SEDs) in the near-IR (NIR) and MIR regime, while the remainder show a NIR bump in their SEDs. Assuming that the redshift distribution for our DOGs sample is Gaussian, with mean and sigma $z$ = 1.99 $pm$ 0.45, we calculated their total IR luminosity using an empirical relation between 22 $mu$m luminosity and total IR luminosity. The average value of the total IR luminosity is (3.5 $pm$ 1.1) $times$ $10^{13}$ L$_{odot}$, which classifies them as hyper-luminous infrared galaxies (HyLIRGs). We also derived the total IR luminosity function (LF) and IR luminosity density (LD) for a flux-limited subsample of 18 DOGs with 22 $mu$m flux greater than 3.0 mJy and with $i$-band magnitude brighter than 24 AB magnitude. The derived space density for this subsample is log $phi$ = -6.59 $pm$ 0.11 [Mpc$^{-3}$]. The IR LF for DOGs including data obtained from the literature is well fitted by a double-power law. The derived lower limit for the IR LD for our sample is $rho_{mathrm{IR}}$ $sim$ 3.8 $times$ 10$^7$ [L$_{odot}$ Mpc$^{-3}$] and its contributions to the total IR LD, IR LD of all ultra-luminous infrared galaxies (ULIRGs), and that of all DOGs are $>$ 3 %, $>$ 9 %, and $>$ 15 %, respectively.
We report the discovery by the Wide-field Infrared Survey Explorer of the z = 2.452 source WISE J181417.29+341224.9, the first hyperluminous source found in the WISE survey. WISE 1814+3412 is also the prototype for an all-sky sample of ~1000 extremely luminous W1W2-dropouts (sources faint or undetected by WISE at 3.4 and 4.6 microns and well detected at 12 or 22 microns). The WISE data and a 350 micron detection give a minimum bolometric luminosity of 3.7 x 10^13 Lsun, with ~10^14 Lsun plausible. Followup images reveal four nearby sources: a QSO and two Lyman Break Galaxies (LBGs) at z = 2.45, and an M dwarf star. The brighter LBG dominates the bolometric emission. Gravitational lensing is unlikely given the source locations and their different spectra and colors. The dominant LBG spectrum indicates a star formation rate ~300 Msun/yr, accounting for < 10% of the bolometric luminosity. Strong 22 micron emission relative to 350 microns implies that warm dust contributes significantly to the luminosity, while cooler dust normally associated with starbursts is constrained by an upper limit at 1.1 mm. Radio emission is ~10x above the far-infrared/radio correlation, indicating an active galactic nucleus is present. An obscured AGN combined with starburst and evolved stellar components can account for the observations. If the black hole mass follows the local M_BH-bulge mass relation, the implied Eddington ratio is >~4. WISE 1814+3412 may be a heavily obscured object where the peak AGN activity occurred prior to the peak era of star formation.
We report the discovery of the ultra-luminous QSO SMSS~J215728.21-360215.1 with magnitude $z=16.9$ and W4$=7.42$ at redshift 4.75. Given absolute magnitudes of $M_{145,rm AB}=-29.3$, $M_{300,rm AB}=-30.12$ and $log L_{rm bol}/L_{rm bol,odot} = 14.84$, it is the QSO with the highest unlensed UV-optical luminosity currently known in the Universe. It was found by combining proper-motion data from Gaia DR2 with photometry from SkyMapper DR1 and the Wide-field Infrared Survey Explorer (WISE). In the Gaia database it is an isolated single source and thus unlikely to be strongly gravitationally lensed. It is also unlikely to be a beamed source as it is not discovered in the radio domain by either NVSS or SUMSS. It is classed as a weak-emission-line QSO and possesses broad absorption line features. A lightcurve from ATLAS spanning the time from October 2015 to December 2017 shows little sign of variability.
The WISE mission has unveiled a rare population of high-redshift ($z=1-4.6$), dusty, hyper-luminous galaxies, with infrared luminosities $L_{rm IR} > 10^{13}~L_{odot}$, and sometimes exceeding $10^{14}~L_{odot}$. Previous work has shown that their dust temperatures and overall far-IR SEDs are significantly hotter than expected for star-formation. We present here an analysis of the rest-frame optical through mid-IR SEDs for a large sample of these so-called Hot, Dust-Obscured Galaxies (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured AGN that dominates the rest-frame emission at $lambda > 1murm m$ and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as $10^{11}-10^{12}~M_{odot}$, the AGN emission, with luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This is inconsistent with the trend of a diminishing fraction of obscured objects with increasing luminosity found for less luminous QSOs, possibly indicating a reversal in this relation at high luminosity, and that Hot DOGs are not the torus-obscured counterparts of the known optically selected, largely unobscured Hyper-Luminous QSOs. Hot DOGs may represent a different type of galaxy and thus a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and show that these objects are in regions as dense as those of known high-redshift proto-clusters.(Abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا