Do you want to publish a course? Click here

A deficit of ultraluminous X-ray sources in luminous infrared galaxies

134   0   0.0 ( 0 )
 Added by Wasutep Luangtip
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from a Chandra study of ultraluminous X-ray sources (ULXs) in a sample of 17 nearby (D_L<60 Mpc) luminous infrared galaxies (LIRGs), selected to have star formation rates (SFRs) in excess of 7 M_sun yr^-1 and low foreground Galactic column densities (N_H < 5*10^20 cm^-2). A total of 53 ULXs were detected and we confirm that this is a complete catalogue of ULXs for the LIRG sample. We examine the evolution of ULX spectra with luminosity by stacking the spectra of individual objects in three luminosity bins, finding a distinct change in spectral index at luminosity ~2 *10^39 erg s^-1. This may be a change in spectrum as 10 M_sun black holes transit from a ~Eddington to a super-Eddington accretion regime, and is supported by a plausible detection of partially-ionised absorption imprinted on the spectrum of the luminous ULX (L_X ~5*10^39 erg s^-1) CXOU J024238.9-000055 in NGC 1068, consistent with the highly ionised massive wind that we would expect to see driven by a super-Eddington accretion flow. This sample shows a large deficit in the number of ULXs detected per unit SFR (0.2 ULXs M_sun^-1 yr^-1). This deficit also manifests itself as a lower differential X-ray luminosity function normalisation for the LIRG sample than for samples of other star forming galaxies. We show that it is unlikely that this deficit is a purely observational effect. Part of this deficit might be attributable to the high metallicity of the LIRGs impeding the production efficiency of ULXs and/or a lag between the star formation starting and the production of ULXs; however, we argue that the evidence -- including very low N_ULX/L_FIR, and an even lower ULX incidence in the central regions of the LIRGs -- shows that the main culprit for this deficit is likely to be the high column of gas and dust in these galaxies, that fuels the high SFR but also acts to obscure many ULXs from our view.



rate research

Read More

We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations indicates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.
Although ultra-luminous X-ray sources (ULX) are important for astrophysics due to their extreme apparent super-Eddington luminosities, their nature is still poorly known. Theoretical and observational studies suggest that ULXs could be a diversified group of objects composed of low-mass X-ray binaries, high-mass X-ray binaries and marginally also systems containing intermediate-mass black holes, which is supported by their presence in a variety of environments. Observational data on the ULX donors could significantly boost our understanding of these systems, but only a few were detected. There are several candidates, mostly red supergiants (RSGs), but surveys are typically biased toward luminous near-infrared objects. Nevertheless, it is worth exploring if RSGs can be members of ULX binaries. In such systems matter accreted onto the compact body would have to be provided by the stellar wind of the companion, since a Roche-lobe overflow could be unstable for relevant mass-ratios. Here we present a comprehensive study of the evolution and population of wind-fed ULXs and provide a theoretical support for the link between RSGs and ULXs. Our estimated upper limit on contribution of wind-fed ULX to the overall ULX population is $sim75$--$96%$ for young ($<100$ Myr) star forming environments, $sim 49$--$87%$ for prolonged constant star formation (e.g., disk of Milky Way), and $lesssim1%$ for environments in which star formation ceased long time ($>2$ Gyr) ago. We show also that some wind-fed ULXs (up to $6%$) may evolve into merging double compact objects (DCOs), but typical systems are not viable progenitors of such binaries because of their large separations. We demonstrate that, the exclusion of wind-fed ULXs from population studies of ULXs, might have lead to systematical errors in their conclusions.
We present the results of our continued systematic search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within 10 Mpc. We observed 42 ULXs in 24 nearby galaxies and detected NIR candidate counterparts to 15 ULXs. Fourteen of these ULXs appear to have a single candidate counterpart in our images and the remaining ULX has 2 candidate counterparts. Seven ULXs have candidate counterparts with absolute magnitudes in the range between -9.26 and -11.18 mag, consistent with them being red supergiants (RSGs). The other eight ULXs have candidate counterparts with absolute magnitudes too bright to be a single stellar source. Some of these NIR sources show extended morphology or colours expected for Active Galactic Nuclei (AGN), strongly suggesting that they are likely stellar clusters or background galaxies. The red supergiant candidate counterparts form a valuable sample for follow-up spectroscopic observations to confirm their nature, with the ultimate goal of directly measuring the mass of the compact accretor that powers the ULX using binary Doppler shifts.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM-Newton and Chandra observations. We use three models to describe the observed spectra: a power-law, a multi-colour disc (MCD) and a combination of these two models. We find that 7 ULXs show a correlation between the luminosity Lx and the photon index Gamma. Furthermore, 4 out of these 7 ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an Lx-Gamma anti-correlation. The spectra of 4 ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity-temperature diagrams. Finally we show that the `soft excess reported for many of these ULXs at about 0.2 keV seems to roughly follow a trend Lsoft propto T^{-3.5} when modelled with a power-law plus a `cool MCD model. This is contrary to the L propto T^4 relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a about 10 solar mass black hole.
159 - J. M. Miller 2014
The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture, and potential implications for sources such as narrow-line Seyfert-1 galaxies (NLSy1s) and other low-mass active galactic nuclei (AGN).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا