Do you want to publish a course? Click here

A deep catalogue of classical Be stars in the direction of the Perseus Arm: spectral types and interstellar reddenings

96   0   0.0 ( 0 )
 Added by Roberto Raddi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalogue of 247 photometrically and spectroscopically confirmed fainter classical Be stars (13 < r < 16) in the direction of the Perseus Arm of the Milky Way (-1 < b < +4, 120 < l < 140). The catalogue consists of 181 IPHAS-selected new classical Be stars, in addition to 66 objects that were studied by Raddi et al. (2013) more closely, and 3 stars identified as classical Be stars in earlier work. This study more than doubles the number known in the region. Photometry spanning 0.6 to 5 micron, spectral types, and interstellar reddenings are given for each object. The spectral types were determined from low-resolution spectra (lambda / Delta-lambda ~ 800-2000), to a precision of 1-3 subtypes. The interstellar reddenings are derived from the (r - i) colour, using a method that corrects for circumstellar disc emission. The colour excesses obtained range from E(B-V) = 0.3 up to 1.6 - a distribution that modestly extends the range reported in the literature for Perseus-Arm open clusters. For around half the sample, the reddenings obtained are compatible with measures of the total sightline Galactic extinction. Many of these are likely to lie well beyond the Perseus Arm.



rate research

Read More

We investigate a region of the Galactic plane, between 120 <= l <= 140 and -1 <= b <= +4, and uncover a population of moderately reddened (E(B-V) sim 1) classical Be stars within and beyond the Perseus and Outer Arms. 370 candidate emission line stars (13 <= r <= 16) selected from the INT Photometric H-alpha Survey of the Northern Galactic plane (IPHAS) have been followed up spectroscopically. A subset of these, 67 stars with properties consistent with those of classical Be stars, have been observed at sufficient spectral resolution (Delta_lambda sim 2 - 4 Angstrom) at blue wavelengths to narrow down their spectral types. We determine these to a precision estimated to be +/- 1 sub-type and then we measure reddenings via SED fitting with reference to appropriate model atmospheres. Corrections for contribution to colour excess from circumstellar discs are made using an established scaling to H-alpha emission equivalent width. Spectroscopic parallaxes are obtained after luminosity class has been constrained via estimates of distances to neighbouring A/F stars with similar reddenings. Overwhelmingly, the stars in the sample are confirmed as luminous classical Be stars at heliocentric distances ranging from 2 kpc up to sim 12 kpc. However, the errors are presently too large to enable the cumulative distribution function with respect to distance to distinguish between models placing the stars exclusively in spiral arms, or in a smooth exponentially-declining distribution.
Detailed studies of Be stars in environments with different metallicities like the Magellanic Clouds or the Galactic bulge are necessary to understand the formation and evolution mechanisms of the circumstellar disks. However, a detailed study of Be stars in the direction of the bulge of our own galaxy has not been performed until now. We report the first systematic search for Be star candidates in the direction of the Galactic Bulge. We present the catalogue, give a brief description of the stellar variability seen, and show some light curve examples. We searched for stars matching specific criteria of magnitude, color and variability in the I band. Our search was conducted on the 48 OGLE II fields of the Galactic Bulge.This search has resulted in 29053 Be star candidates, 198 of them showing periodic light variations. Nearly 1500 stars in this final sample are almost certainly Be stars, providing an ideal sample for spectroscopic multiobject follow-up studies.
The intermediate-mass pre-main sequence Herbig Ae/Be stars are key to understanding the differences in formation mechanisms between low- and high-mass stars. The study of the general properties of these objects is hampered by the fact that few and mostly serendipitously discovered sources are known. Our goal is to identify new Herbig Ae/Be candidates to create a homogeneous and well defined catalogue of these objects. We have applied machine learning techniques to 4,150,983 sources with data from Gaia DR2, 2MASS, WISE, and IPHAS or VPHAS+. Several observables were chosen to identify new Herbig Ae/Be candidates based on our current knowledge of this class, which is characterised by infrared excesses, photometric variabilities, and H$alpha$ emission lines. Classical techniques are not efficient for identifying new Herbig Ae/Be stars mainly because of their similarity with classical Be stars, with which they share many characteristics. By focusing on disentangling these two types of objects, our algorithm has also identified new classical Be stars. We have obtained a large catalogue of 8470 new pre-main sequence candidates and another catalogue of 693 new classical Be candidates with a completeness of $78.8pm1.4%$ and $85.5pm1.2%$, respectively. Of the catalogue of pre-main sequence candidates, at least 1361 sources are potentially new Herbig Ae/Be candidates according to their position in the Hertzsprung-Russell diagram. In this study we present the methodology used, evaluate the quality of the catalogues, and perform an analysis of their flaws and biases. For this assessment, we make use of observables that have not been accounted for by the algorithm and hence are selection-independent, such as coordinates and parallax based distances. The catalogue of new Herbig Ae/Be stars that we present here increases the number of known objects of the class by an order of magnitude.
We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the the Infrared Calcium Triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower-luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.
58 - Mark J. Pecaut 2016
We highlight differences in spectral types and intrinsic colors observed in pre-main sequence (pre-MS) stars. Spectral types of pre-MS stars are wavelength-dependent, with near-infrared spectra being 3-5 spectral sub-classes later than the spectral types determined from optical spectra. In addition, the intrinsic colors of young stars differ from that of main-sequence stars at a given spectral type. We caution observers to adopt optical spectral types over near-infrared types, since Hertzsprung-Russell (H-R) diagram positions derived from optical spectral types provide consistency between dynamical masses and theoretical evolutionary tracks. We also urge observers to deredden pre-MS stars with tabulations of intrinsic colors specifically constructed for young stars, since their unreddened colors differ from that of main sequence dwarfs. Otherwise, V-band extinctions as much as ~0.6 mag erroneously higher than the true extinction may result, which would introduce systematic errors in the H-R diagram positions and thus bias the inferred ages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا