No Arabic abstract
The objectives of this project are to predict new meteor showers associated with as many as possible known periodic comets and to find a generic relationship of some already known showers with these comets. For a potential parent comet, we model a theoretical stream at the moment of its perihelion passage in a far past, and follow its dynamical evolution until the present. Subsequently, we analyze the orbital characteristics of the parts of the stream that approach the Earths orbit. Modelled orbits of the stream particles are compared with the orbits of actual photographic, video, and radar meteors from several catalogues. The whole procedure is repeated for several past perihelion passages of the parent comet. To keep our description compact but detailed, we usually present only either a single or a few parent comets with their associated showers in one paper. Here, an overview of the results from the modelling of the meteor-shower complexes of more than ten parent bodies will be presented. This enables their diversities to be shown. Some parent bodies may associate meteor showers which exhibit a symmetry of their radiant areas with respect to the ecliptic (ecliptical, toroidal, or showers of an ecliptic-toroidal structure), and there are showers which have no counterpart with a similar ecliptical longitude on the opposite hemisphere. However, symmetry of the radiant areas of the pair filaments with respect to the Earths apex is visible in almost all the complexes which we examined.
A cluster analysis was applied to the combined meteoroid orbit database derived from low-light level video observations by the SonotaCo consortium in Japan (64,650 meteors observed between 2007 and 2009) and by the Cameras for All-sky Meteor Surveillance (CAMS) project in California, during its first year of operation (40,744 meteors from Oct. 21, 2010 to Dec. 31, 2011). The objective was to identify known and potentially new meteoroid streams and identify their parent bodies. The database was examined by a single-linking algorithm using the Southworth and Hawkins D-criterion to identify similar orbits, with a low criterion threshold of D < 0.05. A minimum member threshold of 6 produced a total of 88 meteoroid streams. 43 are established streams and 45 are newly identified streams. The newly identified streams were included as numbers 448-502 in the IAU Meteor Shower Working List. Potential parent bodies are proposed.
In 1977, while Apple II and Atari computers were being sold, a tiny dot was observed in an inconvenient orbit. The minor body 1977 UB, to be named (2060) Chiron, with an orbit between Saturn and Uranus, became the first Centaur, a new class of minor bodies orbiting roughly between Jupiter and Neptune. The observed overabundance of short-period comets lead to the downfall of the Oort Cloud as exclusive source of comets and to the rise of the need for a Trans-Neptunian comet belt. Centaurs were rapidly seen as the transition phase between Kuiper Belt Objects (KBOs), also known as Trans-Neptunian Objects (TNOs) and the Jupiter-Family Comets (JFCs). Since then, a lot more has been discovered about Centaurs: they can have cometary activity and outbursts, satellites, and even rings. Over the past four decades since the discovery of the first Centaur, rotation periods, surface colors, reflectivity spectra and albedos have been measured and analyzed. However, despite such a large number of studies and complementary techniques, the Centaur population remains a mystery as they are in so many ways different from the TNOs and even more so from the JFCs.
We describe an improved technique for using the backscattered phase from meteor radar echo measurements just prior to the specular point ($t_{0}$) to calculate meteor speeds and their uncertainty. Our method, which builds on earlier work of Cervera et al (1997), scans possible speeds in the Fresnel distance - time domain with a dynamic, sliding window and derives a best-speed estimate from the resultant speed distribution. We test the performance of our method, called pre-$t_{0}$ speeds by sliding-slopes technique (PSSST), on transverse scattered meteor echoes observed by the Middle Atmosphere Alomar Radar System (MAARSY) and the Canadian Meteor Orbit Radar (CMOR), and compare the results to time-of-flight and Fresnel transform speed estimates. Our novel technique is shown to produce good results when compared to both model and speed measurements using other techniques. We show that our speed precision is $pm$5$%$ at speeds less than 40 km/s and we find that more than 90$%$ of all CMOR multi-station echoes have PSSST solutions. For CMOR data, PSSST is robust against the selection of critical phase value and poor phase unwrapping. Pick errors of up to $pm$6 pulses for meteor speeds less than about 50 km/s produce errors of less than $pm$5$%$ of the meteoroid speed. In addition, the width of the PSSST speed Kernel density estimate (KDE) is used as a natural measure of uncertainty that captures both noise and $t_0$ pick uncertainties.
Radio emission from meteors or meteor radio afterglows (MRAs) were first detected using the all-sky imaging capabilities of the first station of the Long Wavelength Array (LWA1). In this work, we use the recently commissioned LWA Sevilleta (LWA-SV) station along with the LWA1 to carry out co-ordinated observations. The combined all-sky observations with LWA1 and LWA-SV have co-observed 32 MRAs and 21 transmitter reflections from meteors (meteor scatter events) which are believed to be specular reflections from overdense trails. The flux density of the events observed by each station were measured from the all-sky images. Triangulating the angular direction of events from each station gave the physical location and the distance of the event to each station. The luminosity of the events in each station were calculated using the flux distance relation for an isotropic source. The luminosity distribution for MRAs and meteor scatter events observed by each station shows a clear distinction between these two types of events as the ratio of luminosities are closer to unity for MRAs than the meteor scatter events. Furthermore, we find that MRAs follow an isotropic radiation pattern. This suggests, either a complete incoherent emission mechanism or an incoherent addition of coherently emitting small regions within the meteor trail.
A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic observations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide ground truth for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.