Resolving the Clumpy Structure of the Outflow Winds in the Gravitationally Lensed Quasar SDSS J1029+2623


Abstract in English

We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $sim$ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at $z_{em}$ $sim$ 2.197) whose image separation angle, $theta$ $sim$ 22$^{primeprime}!!$.5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in the images A and B discovered by Misawa et al. (2013) remains unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, $Delta t$ $sim$ 744 days, but rather due to differences along the sightlines. We also discovered time variation of C IV absorption strength in both images A and B, due to change of ionization condition. If a typical absorbers size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.

Download