Do you want to publish a course? Click here

Solar neutrino with Borexino: results and perspectives

135   0   0.0 ( 0 )
 Added by Oleg Smirnov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.



rate research

Read More

The DAMA/LIBRA experiment is composed by about 250 kg of highly radiopure NaI(Tl). It is in operation at the underground Gran Sasso National Laboratory of the INFN. The main aim of the experiment is to investigate the Dark Matter (DM) particles in the Galactic halo by exploiting the model independent DM annual modulation signature. The DAMA/LIBRA experiment and the former DAMA/NaI (the first generation experiment having an exposed mass of about 100 kg) have released results corresponding to a total exposure of 1.17 ton $times$ yr over 13 annual cycles; they have provided a model independent evidence of the presence of DM particles in the galactic halo at 8.9 $sigma$ C.L.. The results of a further annual cycle, concluding the DAMA/LIBRA--phase1, have been released after this Workshop and are not included here. In the fall 2010 an important upgrade of the experiment have been performed. All the PMTs of the NaI(Tl) detectors have been replaced with new ones having higher quantum efficiency with the aim to decrease the software energy threshold considered in the data analysis. The perspectives of the running DAMA/LIBRA--phase2 will be shortly summarized.
Borexino is a liquid scintillator detector located at the Laboratori Nazionale del Gran Sasso, Italy with the main goal to measure solar neutrinos. The experiment recently provided the first direct experimental evidence of CNO-cycle neutrinos in the Sun, rejecting the no-CNO signal hypothesis with a significance greater than 5$sigma$ at 99%C.L. The intrinsic $^{210}$Bi is an important background for this analysis due to its similar spectral shape to that of CNO neutrinos. $^{210}$Bi can be measured through its daughter $^{210}$Po which can be distinguished through an event-by-event basis via pulse shape discrimination. However, this required reducing the convective motions in the scintillator that brought additional $^{210}$Po from peripheral sources. This was made possible through the thermal insulation and stabilization campaign performed between 2015 and 2016. This article will explain the strategy and the different methods performed to extract the $^{210}$Bi upper limit in Phase-III (Jul 2016- Feb 2020) of the experiment through the analysis of $^{210}$Po in the cleanest region of the detector called the Low Polonium Field.
Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment.
Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. This paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements.
273 - Andrea Pocar 2018
We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا