Do you want to publish a course? Click here

Effectiveness of classical spin simulations for describing NMR relaxation of quantum spins

313   0   0.0 ( 0 )
 Added by Tarek A. Elsayed Dr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the limits of effectiveness of classical spin simulations for predicting free induction decays (FIDs) measured by solid-state nuclear magnetic resonance (NMR) on systems of quantum nuclear spins. The specific limits considered are associated with the range of interaction, the size of individual quantum spins and the long-time behavior of the FID signals. We compare FIDs measured or computed for lattices of quantum spins (mainly spins 1/2) with the FIDs computed for the corresponding lattices of classical spins. Several cases of excellent quantitative agreement between quantum and classical FIDs are reported along with the cases of gradually decreasing quality of the agreement. We formulate semi-empirical criteria defining the situations, when classical simulations are expected to accurately reproduce quantum FIDs. Our findings indicate that classical simulations may be a quantitatively accurate tool of first principles calculations for a broad class of macroscopic systems, where individual quantum microscopic degrees of freedom are far from the classical limit.

rate research

Read More

We consider the effect of non-secular resonances for interacting nuclear spins in solids which were predicted theoretically to exist in the presence of strong static and strong radio-frequency magnetic fields. These resonances imply corrections to the standard secular approximation for the nuclear spin-spin interaction in solids, which, in turn, should lead to an anomalous longitudinal relaxation in nuclear magnetic resonance experiments. In this article, we investigate the feasibility of the experimental observation of this anomalous longitudinal relaxation in calcium fluoride (CaF$_2$) and conclude that such an observation is realistic.
Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems such as simulation of physical systems more efficiently than classical computers. Much remains to be done to implement these conceptual ideas into actual quantum computers. As a small-scale demonstration of their capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid state Nuclear Magnetic Resonance (NMR). We carefully designed our experiment so that the resource requirement would scale up polynomially with the size of the quantum system to be simulated. The experimental results allow us to assess the limits of the degree of quantum control attained in these kinds of experiments. The simulation of other physical systems, with different particle statistics, is also discussed.
We investigate the evolution of entanglement in multiple-quantum (MQ) NMR experiments in crystals with pairs of close nuclear spins-1/2. The initial thermodynamic equilibrium state of the system in a strong external magnetic field evolves under the non-secular part of the dipolar Hamiltonian. As a result, MQ coherences of the zeroth and plus/minus second orders appear. A simple condition for the emergence of entanglement is obtained. We show that the measure of the spin pair entanglement, concurrence, coincides qualitatively with the intensity of MQ coherences of the plus/minus second order and hence the entanglement can be studied with MQ NMR methods. We introduce an Entanglement Witness using MQ NMR coherences of the plus/minus second order.
The time evolution of quantum many-body systems is one of the least understood frontiers of physics. The most curious feature of such dynamics is, generically, the growth of quantum entanglement with time to an amount proportional to the system size (volume law) even when the interactions are local. This phenomenon, unobserved to date, has great ramifications for fundamental issues such as thermalisation and black-hole formation, while its optimisation clearly has an impact on technology (e.g., for on-chip quantum networking). Here we use an integrated photonic chip to simulate the dynamics of a spin chain, a canonical many-body system. A digital approach is used to engineer the evolution so as to maximise the generation of entanglement. The resulting volume law growth of entanglement is certified by constructing a second chip, which simultaneously measures the entanglement between multiple distant pairs of simulated spins. This is the first experimental verification of the volume law and opens up the use of photonic circuits as a unique tool for the optimisation of quantum devices.
128 - E.B. Feldman , A.N. Pyrkov 2011
A phenomenological theory of spin-lattice relaxation of multiple-quantum coherences in systems of two dipolar coupled spins at low temperatures is developed. Intensities of multiple-quantum NMR coherences depending on the spin-lattice relaxation time are obtained. It is shown that the theory is also applicable to finite spin chains when the approximation of nearest neighbour interaction is used. An application of this theory to an estimation of the influence of decoherence processes on quantum entanglement and its fluctuations is briefly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا