Do you want to publish a course? Click here

Development of large radii half-wave plates for CMB satellite missions

154   0   0.0 ( 0 )
 Added by Bruno Maffei
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.



rate research

Read More

CONTEXT.Large field-of-view imaging/polarimetry instruments operating at millimeter and submm wavelengths are fundamental tools to understand the role of magnetic fields (MF) in channeling filament material into prestellar cores providing a unique insight in the physics of galactic star-forming regions. Among other topics, at extra-galactic scales, polarization observations of AGNs will allow us to constrain the possible physical conditions of the emitting plasma from the jets and/or exploring the physics of dust inside supernova remnants. The kilo-pixel NIKA2 camera, installed at the IRAM 30-m telescope, represents today one of the best tools available to the astronomers to produce simultaneous intensity/polarimetry maps over large fields at 260 GHz (1.15 mm). AIMS.The polarization measurement, in NIKA and NIKA2, is achieved by rapidly modulating the total incoming polarization. This allows in the end to safely isolate the small science signal from the large, un-polarized and strongly variable, atmospheric background. METHODS.The polarization modulation is achieved by inserting a fast rotating Half-Wave Plate (HWP) in the optical beam. In order to allow wide field-of-view observations, the plate has to be large, with a diameter exceeding 250 mm. The modulation of the polarized signal, at 12 Hz, requires also the waveplate to be sufficiently light. In addition, this key optical element has to exhibit optimal electromagnetic characteristics in terms of transmission and differential phase-shift. For this purpose, three metamaterial HWPs have been developed using the mesh-filter technology. The knowledge acquired in developing the first two single-band HWPs was used to achieve the more challenging performance requirements of the last dual-band HWP. The first and the third waveplates met the requirements for both the NIKA and NIKA2 instruments. RESULTS.(abridged)
Current and future Cosmic Microwave Background (CMB) Radiation experiments are targeting the polarized $B$-mode signal. The small amplitude of this signal makes a successful measurement challenging for current technologies. Therefore, very accurate studies to mitigate and control possible systematic effects are vital to achieve a successful observation. An additional challenge is coming from the presence of polarized Galactic foreground signals that contaminate the CMB signal. When they are combined, the foreground signals dominate the polarized CMB signal at almost every relevant frequency. Future experiments, like the LiteBIRD space-borne mission, aim at measuring the CMB $B$-mode signal with high accuracy to measure the tensor-to-scalar ratio $r$ at the $10^{-3}$ level. We present a method to study the photometric calibration requirement needed to minimize the leakage of polarized Galactic foreground signals into CMB polarization maps for a multi-frequency CMB experiment. We applied this method to the LiteBIRD case, and we found precision requirements for the photometric calibration in the range $sim10^{-4}-2.5times10^{-3}$ depending on the frequency band. Under the assumption that the detectors are uncorrelated, we found requirements per detector in the range $sim0.18times10^{-2}-2.0times10^{-2}$. Finally, we relate the calibration requirements to the band-pass resolution to define constraints for a few representative band-pass responses: $Delta usim0.2-2$ GHz.
We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.
We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at $sim$ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا