No Arabic abstract
Tidal dissipation, which is directly linked to internal structure, is one of the key physical mechanisms that drive systems evolution and govern their architecture. A robust evaluation of its amplitude is thus needed to predict evolution time for spins and orbits and their final states. The purpose of this paper is to refine recent model of the anelastic tidal dissipation in the central dense region of giant planets, commonly assumed to retain a large amount of heavy elements, which constitute an important source of dissipation. The previous paper evaluated the impact of the presence of the static fluid envelope on the tidal deformation of the core and on the associated anelastic tidal dissipation, through the tidal quality factor Qc. We examine here its impact on the corresponding effective anelastic tidal dissipation, through the effective tidal quality factor Qp. We show that the strength of this mechanism mainly depends on mass concentration. In the case of Jupiter- and Saturn-like planets, it can increase their effective tidal dissipation by, around, a factor 2.4 and 2 respectively. In particular, the range of the rheologies compatible with the observations is enlarged compared to the results issued from previous formulations. We derive here an improved expression of the tidal effective factor Qp in terms of the tidal dissipation factor of the core Qc, without assuming the commonly used assumptions. When applied to giant planets, the formulation obtained here allows a better match between the an elastic cores tidal dissipation of a two-layer model and the observations.
Earth-like planets have viscoelastic mantles, whereas giant planets may have viscoelastic cores. The tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on their rheology and on the tidal frequency. Therefore, modelling tidal interactions presents a high interest to provide constraints on planets properties and to understand their history and their evolution, in our Solar System or in exoplanetary systems. We examine the equilibrium tide in the anelastic parts of a planet whatever the rheology, taking into account the presence of a fluid envelope of constant density. We show how to obtain the different Love numbers that describe its tidal deformation. Thus, we discuss how the tidal dissipation in solid parts depends on the planets internal structure and rheology. Finally, we show how the results may be implemented to describe the dynamical evolution of planetary systems. The first manifestation of the tide is to distort the shape of the planet adiabatically along the line of centers. Then, the response potential of the body to the tidal potential defines the complex Love numbers whose real part corresponds to the purely adiabatic elastic deformation, while its imaginary part accounts for dissipation. This dissipation is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which we derive the characteristic evolution times. The rate at which the system evolves depends on the physical properties of tidal dissipation, and specifically on how the shear modulus varies with tidal frequency, on the radius and also the rheological properties of the solid core. The quantification of the tidal dissipation in solid cores of giant planets reveals a possible high dissipation which may compete with dissipation in fluid layers.
The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely-held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planets tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde or 90^{o} orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.
We use the distribution of extrasolar planets in circular orbits around stars with surface convective zones detected by ground based transit searches to constrain how efficiently tides raised by the planet are dissipated on the parent star. We parameterize this efficiency as a tidal quality factor (Q*). We conclude that the population of currently known planets is inconsistent with Q*<10^7 at the 99% level. Previous studies show that values of Q* between 10^5 and 10^7 are required in order to explain the orbital circularization of main sequence low mass binary stars in clusters, suggesting that different dissipation mechanisms might be acting in the two cases, most likely due to the very different tidal forcing frequencies relative to the stellar rotation frequency occurring for star--star versus planet--star systems.
With the discovery of TRAPPIST-1 and its seven planets within 0.06 au, the correct treatment of tidal interactions is becoming necessary. The eccentricity, rotation, and obliquity of the planets of TRAPPIST-1 are indeed the result of tidal evolution over the lifetime of the system. Tidal interactions can also lead to tidal heating in the interior of the planets, which can then be responsible for volcanism and/or surface deformation. In the majority of studies to estimate the rotation of close-in planets or their tidal heating, the planets are considered as homogeneous bodies and their rheology is often taken to be a Maxwell rheology. We investigate here the impact of considering a multi-layer structure and an Andrade rheology on the way planets dissipate tidal energy as a function of the excitation frequency. We use an internal structure model, which provides the radial profile of structural and rheological quantities to compute the tidal response of multi-layer bodies. We then compare the outcome to the dissipation of a homogeneous planet. We find that for purely rocky bodies, it is possible to approximate the response of a multi-layer planet by that of a homogeneous planet. However, using average profiles of shear modulus and viscosity to compute the homogeneous planet response leads to an overestimation of the averaged dissipation. We provide fitted values of shear modulus and viscosity to be able to reproduce the response of various types of rocky planets. However, we find that if the planet has an icy layer, its tidal response can no longer be approximated by a homogeneous body because of the very different properties of the icy layers, which lead to a second dissipation peak at higher frequencies. We also compute the tidal heating profiles for the outer TRAPPIST-1 planets (e to h).