Do you want to publish a course? Click here

Verwey transition in Fe$_{3}$O$_{4}$ thin films: Influence of oxygen stoichiometry and substrate-induced microstructure

250   0   0.0 ( 0 )
 Added by Chun-Fu Chang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have carried out a systematic experimental investigation to address the question why thin films of Fe$_3$O$_4$ (magnetite) generally have a very broad Verwey transition with lower transition temperatures as compared to the bulk. We observed using x-ray photoelectron spectroscopy, x-ray diffraction and resistivity measurements that the Verwey transition in thin films is drastically influenced not only by the oxygen stoichiometry but especially also by the substrate-induced microstructure. In particular, we found (1) that the transition temperature, the resistivity jump, and the conductivity gap of fully stoichiometric films greatly depends on the domain size, which increases gradually with increasing film thickness, (2) that the broadness of the transition scales with the width of the domain size distribution, and (3) that the hysteresis width is affected strongly by the presence of antiphase boundaries. Films grown on MgO (001) substrates showed the highest and sharpest transitions, with a 200 nm film having a T$_V$ of 122K, which is close to the bulk value. Films grown on substrates with large lattice constant mismatch revealed very broad transitions, and yet, all films show a transition with a hysteresis behavior, indicating that the transition is still first order rather than higher order.



rate research

Read More

We investigated the electronic and magnetic properties of fully oxidized BaFeO3 thin films, which show ferromagnetic-insulating properties with cubic crystal structure, by hard x-ray photoemission spectroscopy (HAXPES), x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). We analyzed the results with configuration-interaction (CI) cluster-model calculations for Fe4+, which showed good agreement with the experimental results. We also studied SrFeO3 thin films, which have an Fe4+ ion helical magnetism in cubic crystal structure, but are metallic at all temperatures. We found that BaFeO3 thin films are insulating with large magnetization (2.1muB/formula unit) under ~ 1 T, using valence-band HAXPES and Fe 2p XMCD, which is consistent with the previously reported resistivity and magnetization measurements. Although Fe 2p core-level HAXPES and Fe 2p XAS spectra of BaFeO3 and SrFeO3 thin films are quite similar, we compared the insulating BaFeO3 to metallic SrFeO3 thin films with valence-band HAXPES. The CI cluster-model analysis indicates that the ground state of BaFeO3 is dominated by d5L (L: ligand hole) configuration due to the negative charge transfer energy, and that the band gap has significant O 2p character. We revealed that the differences of the electronic and magnetic properties between BaFeO3 and SrFeO3 arise from the differences in their lattice constants, through affecting the strength of hybridization and bandwidth.
We investigate the differences in the dynamics of the ultrafast photo-induced metal-insulator transition (MIT) of two VO$_2$ thin films deposited on different substrates, TiO$_2$ and Al$_2$O$_3$, and in particular the temperature dependence of the threshold laser fluence values required to induce various MIT stages in a wide range of sample temperatures (150 K - 320 K). We identified that, although the general pattern of MIT evolution was similar for the two samples, there were several differences. Most notably, the threshold values of laser fluence required to reach the transition to a fully metallic phase in the VO$_2$ film on the TiO$_2$ substrate were nearly constant in the range of temperatures considered, whereas the VO$_2$/Al$_2$O$_3$ sample showed clear temperature dependence. Our analysis qualitatively connects such behavior to the structural differences in the two VO$_2$ films.
We provide evidence for the existence of a {em quantum critical point} at the metallization of magnetite Fe$_{3}$O$_{4}$ at an applied pressure of $p_{c} approx 8$ GPa. We show that the present ac magnetic susceptibility data support earlier resistivity data. The Verwey temperature scales with pressure $T_{V}sim (1-p/p_{c})^{ u}$, with $ usim 1/3$. The resistivity data shows a temperature dependence $rho(T)=rho_{0}+AT^{n}$, with $nsimeq 3$ above and 2.5 at the critical pressure, respectively. This difference in $n$ with pressure is a sign of critical behavior at $p_{c}$. The magnetic susceptibility is smooth near the critical pressure, both at the Verwey transition and near the ferroelectric anomaly. A comparison with the critical behavior observed in the Mott-Hubbard and related systems is made.
High pressure can provoke spin transitions in transition metal-bearing compounds. These transitions are of high interest not only for fundamental physics and chemistry, but also may have important implications for geochemistry and geophysics of the Earth and planetary interiors. Here we have carried out a comparative study of the pressure-induced spin transition in compounds with trivalent iron, octahedrally coordinated by oxygen. High-pressure single-crystal M{o}ssbauer spectroscopy data for FeBO$_3$, Fe$_2$O$_3$ and Fe$_3$(Fe$_{1.766(2)}$Si$_{0.234(2)}$)(SiO$_4$)$_3$ are presented together with detailed analysis of hyperfine parameter behavior. We argue that $zeta$-Fe$_2$O$_3$ is an intermediate phase in the reconstructive phase transition between $iota$-Fe$_2$O$_3$ and $theta$-Fe$_2$O$_3$ and question the proposed perovskite-type structure for $zeta$-Fe$_2$O$_3$.The structural data show that the spin transition is closely related to the volume of the iron octahedron. The transition starts when volumes reach 8.9-9.3 AA$^3$, which corresponds to pressures of 45-60 GPa, depending on the compound. Based on phenomenological arguments we conclude that the spin transition can proceed only as a first-order phase transition in magnetically-ordered compounds. An empirical rule for prediction of cooperative behavior at the spin transition is proposed. The instability of iron octahedra, together with strong interactions between them in the vicinity of the critical volume, may trigger a phase transition in the metastable phase. We find that the isomer shift of high spin iron ions depends linearly on the octahedron volume with approximately the same coefficient, independent of the particular compounds and/or oxidation state. For eight-fold coordinated Fe$^{2+}$ we observe a significantly weaker nonlinear volume dependence.
We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport, and magnetization of Pr_{0.6}Ca_{0.4}MnO_{3} films grown on LaAlO_{3}, NdGaO_{3}, and SrTiO_{3} substrates, which provide compressive (LaAlO_{3}) and tensile (NdGaO_{3} and SrTiO_{3}) strain. The films are observed to exhibit different crystallographic symmetries than the bulk material, and the low-temperature ordering is found to be more robust under compressive-- as opposed to tensile-- strain. In fact, bulk-like charge and orbital ordering is not observed in the film grown on NdGaO_{3}, which is the substrate that provides the least amount of nominal and measured, but tensile, strain. This result suggests the importance of the role played by the Mn--O--Mn bond angles in the formation of charge and orbital ordering at low temperatures. Finally, in the film grown on LaAlO_{3}, a connection between the lattice distortion associated with orbital ordering and the onset of antiferromagnetism is reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا