Do you want to publish a course? Click here

Resolving the shocked gas in HH54 with Herschel: CO line mapping at high spatial and spectral resolution

129   0   0.0 ( 0 )
 Added by Per Bjerkeli
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s$^{-1}$. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 $mu$m) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.



rate research

Read More

Apart from being an important coolant, H2O is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the H2O emitting gas, however, are not fully understood yet. We aim to determine the abundance and distribution of H2O, its kinematics and the physical conditions of the gas responsible for the H2O emission. The observed line profile shapes help us understand the dynamics in molecular outflows. We mapped the VLA1623 outflow, in the ground-state transitions of o-H2O, with the HIFI and PACS instruments. We also present observations of higher energy transitions of o-H2O and p-H2O obtained with HIFI and PACS towards selected outflow positions. From comparison with non-LTE radiative transfer calculations, we estimate the physical parameters of the water emitting regions. The observed water emission line profiles vary over the mapped area. Spectral features and components, tracing gas in different excitation conditions, allow us to constrain the density and temperature of the gas. The H2O emission originates in a region where temperatures are comparable to that of the warm H2 gas (Tgtrsim200K). Thus, the H2O emission traces a gas component significantly warmer than the gas responsible for the low-J CO emission. The H2O column densities at the CO peak positions are low, i.e. N(H2O) simeq (0.03-10)x10e14 cm-2. The H2O abundance with respect to H2 in the extended outflow is estimated at X(H2O)<1x10e-6, significantly lower than what would be expected from most recent shock models. The H2O emission traces a gas component moving at relatively high velocity compared to the low-J CO emitting gas. However, other dynamical quantities such as the momentum rate, energy and mechanical luminosity are estimated to be the same, independent of the molecular tracer used, CO or H2O.
We present ~2x2 spectral-maps of Orion BN/KL outflows taken with Herschel at ~12 resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H2 shocked regions Peak 1 and Peak 2 from that of the Hot Core and ambient cloud. We analyze the ~54-310um spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of 12CO (up to J=48-47), H2O, OH, 13CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/L(FIR)~5x10^{-3} ratio and a plethora of far-IR H2O emission lines. The high-J CO and OH lines are a factor ~2 brighter toward Peak 1 whereas several excited H2O lines are ~50% brighter toward Peak 2. A simplified non-LTE model allowed us to constrain the dominant gas temperature components. Most of the CO column density arises from Tk~200-500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H2O/CO~10^{-2} abundance ratio. In addition, the very excited CO (J>35) and H2O lines reveal a hotter gas component (Tk~2500 K) from faster (v_S>25 km/s) shocks that are able to sputter the frozen-out H2O and lead to high H2O/CO>~1 abundance ratios. The H2O and OH luminosities cannot be reproduced by shock models that assume high (undepleted) abundances of atomic oxygen in the preshock gas and/or neglect the presence of UV radiation in the postshock gas. Although massive outflows are a common feature in other massive star-forming cores, Orion BN/KL seems more peculiar because of its higher molecular luminosities and strong outflows caused by a recent explosive event.
428 - Ya-Wen Tang 2015
We aim to unveil the observational imprint of physical mechanisms that govern planetary formation in the young, multiple system GG Tau A. We present ALMA observations of $^{12}$CO and $^{13}$CO 3-2 and 0.9 mm continuum emission with 0.35 resolution. The $^{12}$CO 3-2 emission, found within the cavity of the circumternary dust ring (at radius $< 180$ AU) where no $^{13}$CO emission is detected, confirms the presence of CO gas near the circumstellar disk of GG Tau Aa. The outer disk and the recently detected hot spot lying at the outer edge of the dust ring are mapped both in $^{12}$CO and $^{13}$CO. The gas emission in the outer disk can be radially decomposed as a series of slightly overlapping Gaussian rings, suggesting the presence of unresolved gaps or dips. The dip closest to the disk center lies at a radius very close to the hot spot location at $sim250-260$~AU. The CO excitation conditions indicate that the outer disk remains in the shadow of the ring. The hot spot probably results from local heating processes. The two latter points reinforce the hypothesis that the hot spot is created by an embedded proto-planet shepherding the outer disk.
In the framework of the WISH key program, several H2O (E_u>190 K), high-J CO, [OI], and OH transitions are mapped with PACS in two shock positions along the two prototypical low-luminosity outflows L1448 and L1157. Previous HIFI H2O observations (E_u=53-249 K) and complementary Spitzer mid-IR H2 data are also used, with the aim of deriving a complete picture of the excitation conditions. At all selected spots a close spatial association between H2O, mid-IR H2, and high-J CO emission is found, whereas the low-J CO emission traces either entrained ambient gas or a remnant of an older shock. The excitation analysis at L1448-B2 suggests that a two-component model is needed to reproduce the H2O, CO, and mid-IR H2 lines: an extended warm component (T~450 K) is traced by the H2O emission with E_u =53-137 K and by the CO lines up to J=22-21, and a compact hot component (T=1100 K) is traced by the H2O emission with E_u>190 K and by the higher-J CO lines. At L1448-B2 we obtain an H2O abundance (3-4)x10^{-6} for the warm component and (0.3-1.3)x10^{-5} for the hot component; we also detect OH and blue-shifted [OI] emission, spatially coincident with the other molecular lines and with [FeII] emission. This suggests a dissociative shock for these species, related to the embedded atomic jet. On the other hand, a non-dissociative shock at the point of impact of the jet on the cloud is responsible for the H2O and CO emission. The other examined shock positions show an H2O excitation similar to L1448-B2, but a slightly higher H2O abundance (a factor of 4). The two gas components may represent a gas stratification in the post-shock region. The extended and low-abundance warm component traces the post-shocked gas that has already cooled down to a few hundred Kelvin, whereas the compact and possibly higher-abundance hot component is associated with the gas that is currently undergoing a shock episode.
The youngest, closest and most compact embedded massive star cluster known excites the supernebula in the nearby dwarf galaxy NGC 5253. It is a crucial target and test case for studying the birth and evolution of the most massive star clusters. We present observations of the ionized gas in this source with high spatial and spectral resolution. The data includes continuum images of free-free emission with ~0.15 resolution made with the JVLA at 15, 22 and 33 GHz, and a full data cube of the [SIV]10.5 micron fine-structure emission line with ~4.5 km/s velocity resolution and 0.3 beam, obtained with TEXES on Gemini North. We find that 1) the ionized gas extends out from the cluster in arms or jets, and 2) the ionized gas comprises two components offset both spatially and in velocity. We discuss mechanisms that may have created the observed velocity field; possibilities include large-scale jets or a subcluster falling onto the main source.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا