Distributed Reception with Spatial Multiplexing: MIMO Systems for the Internet of Things


Abstract in English

The Internet of things (IoT) holds much commercial potential and could facilitate distributed multiple-input multiple-output (MIMO) communication in future systems. We study a distributed reception scenario in which a transmitter equipped with multiple antennas sends multiple streams via spatial multiplexing to a large number of geographically separated single antenna receive nodes. The receive nodes then quantize their received signals and forward the quantized received signals to a receive fusion center. With global channel knowledge and forwarded quantized information from the receive nodes, the fusion center attempts to decode the transmitted symbols. We assume the transmit vector consists of phase shift keying (PSK) constellation points, and each receive node quantizes its received signal with one bit for each of the real and imaginary parts of the signal to minimize the transmission overhead between the receive nodes and the fusion center. Fusing this data is a non-trivial problem because the receive nodes cannot decode the transmitted symbols before quantization. Instead, each receive node processes a single quantity, i.e., the received signal, regardless of the number of transmitted symbols. We develop an optimal maximum likelihood (ML) receiver and a low-complexity zero-forcing (ZF)-type receiver at the fusion center. Despite its suboptimality, the ZF-type receiver is simple to implement and shows comparable performance with the ML receiver in the low signal-to-noise ratio (SNR) regime but experiences an error rate floor at high SNR. It is shown that this error floor can be overcome by increasing the number of receive nodes. Hence, the ZF-type receiver would be a practical solution for distributed reception with spatial multiplexing in the era of the IoT where we can easily have a large number of receive nodes.

Download