No Arabic abstract
We discuss a theoretical model for bidirectional cargo transport in biological cells, which is driven by teams of molecular motors and subject to thermal fluctuations. The model describes explicitly the directed motion of the molecular motors on the filament. The motor-cargo coupling is implemented via linear springs. By means of extensive Monte Carlo simulations we show that the model describes the experimentally observed regimes of anomalous diffusion, i.e. subdiffusive behavior at short times followed by superdiffusion at intermediate times. The model results indicate that subdiffuse regime is induced by thermal fluctuations while the superdiffusive motion is generated by correlations of the motors activity. We also tested the efficiency of bidirectional cargo transport in crowded areas by measuring its ability to pass barriers with increased viscosity. Our results show a remarkable gain of efficiency for high viscosities.
Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show that bias can be simply controlled or even reversed in a counterintuitive manner via a change in the external force exerted on the cargo or a variation of the ATP binding rate to motors. Furthermore, the superdiffusive behavior found at short time scales indicates the emergence of motor cooperation induced by cargo-mediated coupling.
Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by Muller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the systems dynamic.
Within cells, vesicles and proteins are actively transported several micrometers along the cytoskeletal filaments. The transport along microtubules is propelled by dynein and kinesin motors, which carry the cargo in opposite directions. Bidirectional intracellular transport is performed with great efficiency, even under strong confinement, as for example in the axon. For this kind of transport system, one would expect generically cluster formation. In this work, we discuss the effect of the recently observed self-enhanced binding-affinity along the kinesin trajectories on the MT. We introduce a stochastic lattice-gas model, where the enhanced binding affinity is realized via a floor-field. From Monte Carlo simulations and a mean-field analysis we show that this mechanism can lead to self-organized symmetry-breaking and lane-formation which indeed leads to efficient bidirectional transport in narrow environments.
Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the transportation of large cargos by multiple motors, we concentrate on axonal transport, because of its relevance for neuronal diseases. It is a challenge to understand how this transport is organized, given that it takes place in a confined environment and that several types of motors moving in opposite directions are involved. We review several features that could contribute to the efficiency of this transport, including the role of motor-motor interactions and of the dynamics of the underlying microtubule network. Finally, we discuss some still open questions.
We analyze theoretically the problem of cargo transport along microtubules by motors of two species with opposite polarities. We consider two different one-dimensional models previously developed in the literature. On the one hand, a quite widespread model which assumes equal force sharing, here referred to as mean field model (MFM). On the other hand, a stochastic model (SM) which considers individual motor-cargo links. We find that in generic situations the MFM predicts larger cargo mean velocity, smaller mean run time and less frequent