Do you want to publish a course? Click here

On some class of partial difference equations admitting a zero-curvature representation

300   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show some classes of higher order partial difference equations admitting a zero-curvature representation and generalizing lattice potential KdV equation. We construct integrable hierarchies which, as we suppose, yield generalized symmetries for obtained class of partial difference equations. As a byproduct we also derive non-evolutionary differential-difference equations with their Lax pair representation which may be of potential interest.



rate research

Read More

196 - Andrei K. Svinin 2013
This note is designed to show some classes of differential-difference equations admitting Lax representation which generalize evolutionary equations known in the literature.
228 - Andrei K. Svinin 2015
We consider two infinite classes of ordinary difference equations admitting Lax pair representation. Discrete equations in these classes are parameterized by two integers $kgeq 0$ and $sgeq k+1$. We describe the first integrals for these two classes in terms of special discrete polynomials. We show an equivalence of two difference equations belonged to different classes corresponding to the same pair $(k, s)$. We show that solution spaces $mathcal{N}^k_s$ of different ordinary difference equations with fixed value of $s+k$ are organized in chain of inclusions.
154 - Andrei K. Svinin 2013
We introduce two classes of discrete polynomials and construct discrete equations admitting a Lax representation in terms of these polynomials. Also we give an approach which allows to construct lattice integrable hierarchies in its explicit form and show some examples.
167 - Andrei K. Svinin 2021
In this paper we show that an arbitrary solution of one ordinary difference equation is also a solution for infinite class of difference equations. We also provide an example of such a solution that is related to sequence generated by second-order linear recurrent relations.
Discrete Painleve equations are nonlinear, nonautonomous difference equations of second-order. They have coefficients that are explicit functions of the independent variable $n$ and there are three different types of equations according to whether the coefficient functions are linear, exponential or elliptic functions of $n$. In this paper, we focus on the elliptic type and give a review of the construction of such equations on the $E_8$ lattice. The first such construction was given by Sakai cite{SakaiH2001:MR1882403}. We focus on recent developments giving rise to more examples of elliptic discrete Painleve equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا