Do you want to publish a course? Click here

Storage Ring And Interaction Region Magnets For A {mu}+{mu}- Higgs Factory

113   0   0.0 ( 0 )
 Added by Zlobin, Alexander
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A low-energy Muon Collider (MC) offers unique opportunities to study the recently found Higgs boson. However, due to a relatively large beam emittance with moderate cooling in this machine, large-aperture high- field superconducting (SC) magnets are required. The magnets need also an adequate margin to operate at a large radiation load from the muon decay showers. General specifications of the SC dipoles and quadrupoles for the 125 GeV c.o.m. Higgs Factory with an average luminosity of ~2x10**31 cm-2s-1 are formulated. Magnet conceptual designs and parameters are reported. The impact of the magnet fringe fields on the beam dynamics as well as the IR and lattice magnet protection from radiation are also reported and discussed.



rate research

Read More

54 - Chung Kao , Yili Wang 2006
We investigate the prospects for the discovery of neutral Higgs bosons with muons by direct searches at the CERN Large Hadron Collider (LHC) as well as by indirect searches in the rare decay Bs -> mu+ mu- at the Fermilab Tevatron and the LHC. Promising results have been found for the minimal supersymmetric standard model, the minimal supergravity (mSUGRA) model, and supergravity models with non-universal Higgs masses (NUHM SUGRA). For tanb simeq 50, we find that (i) the contours for a branching fraction of B(Bs -> mu+ mu-) = 1x10^{-8} in the parameter space are very close to the 5sigma contours for pp -> b phi^0 -> b mu+ mu- + X, phi^0 = h^0, H^0, A^0 at the LHC with an integrated luminosity (L) of 30 fb^{-1},(ii) the regions covered by B(Bs -> mu+ mu-) ge 5x10^{-9} and the discovery region for bphi^0 -> b mu+ mu- with 300 fb^{-1} are complementary in the mSUGRA parameter space,(iii) in NUHM SUGRA models, a discovery of B(Bs -> mu+ mu-) simeq 5x10^{-9} at the LHC will cover regions of the parameter space beyond the direct search for pp -> bphi^0 -> b mu+ mu- with L = 300 fb^{-1}.
We report on an injection feedback scheme for the ThomX storage ring project. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering in a storage ring to generate a high flux of hard X-rays. Given the slow beam damping (in the ring), the injection must be performed with high accuracy to avoid large betatron oscillations. A homemade analytic code is used to compute the corrections that need to be applied before the beam injection to achieve a beam position accuracy of a few hundred micrometers in the first beam position monitors (BPMs). In order to do so the code needs the information provided by the rings diagnostic devices. The iterative feedback system has been tested using MadX simulations. Our simulations show that a performance that matches the BPMs accuracy can be achieved in less than 50 iterations in all cases. Details of this feedback algorithm, its efficiency and the simulations are discussed.
Recent discovery of a Higgs boson boosted interest in a low-energy medium-luminosity Muon Collider as a Higgs Factory (HF). A preliminary design of the HF storage ring (SR) is based on cos-theta Nb3Sn superconducting (SC) magnets with the coil inner diameter ranging from 50 cm in the interaction region to 16 cm in the arc. The coil cross-sections were chosen based on the operation margin, field quality and quench protection considerations to provide an adequate space for the beam pipe, helium channel and inner absorber (liner). With the 62.5-GeV muon energy and 2 x 10^12 muons per bunch, the electrons from muon decays deposit about 300 kW in the SC magnets, or unprecedented 1 kW/m dynamic heat load, which corresponds to a multi-MW room temperature equivalent. Based on the detailed MARS15 model built and intense simulations, a sophisticated protection system was designed for the entire SR to bring the peak power density in the SC coils safely below the quench limit and reduce the dynamic heat load to the cold mass by a factor of 100. The system consists of tight tungsten masks in the magnet interconnect regions and elliptical tungsten liners optimized for each magnet.
Low-energy medium-luminosity Muon Collider (MC) is being studied as a possible Higgs Factory (HF). Electrons from muon decays will deposit more than 300 kW in superconducting magnets of the HF collider ring. This imposes significant challenges to superconducting (SC) magnets used in the MC storage ring (SR) and interaction regions (IR). The magnet designs are proposed which provide high operating gradient and magnetic field in a large aperture to accommodate the large size of muon beams due to low b{eta}* as well as the cooling system to intercept the large heat deposition from the showers induced by decay electrons. Specific distribution of heat deposition in the lattice elements MC SR requires large aperture magnets to accommodate thick high-Z absorbers to protect the SC coils. Based on the developed MARS15 model and intense simulations, a sophisticated radiation protection system was designed for the collider SR and IR to bring the peak power density in the superconducting coils below the quench limit and reduce the dynamic heat deposition in the cold mass by a factor of 100. The system consists of tight tungsten masks in the magnet interconnect regions and elliptical tungsten liners in magnet aperture optimized for each magnet. It also reduces the background particle fluxes in the collider detector.
87 - B. Autin 2003
The term beta-beam has been coined for the production of a pure beam of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. This concept requires radioactive ions to be accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino source itself consists of a storage ring for this energy range, with long straight sections in line with the experiment(s). Such a decay ring does not exist at CERN today, nor does a high-intensity proton source for the production of the radioactive ions. Nevertheless, the existing CERN accelerator infrastructure could be used as this would still represent an important saving for a beta-beam facility. This paper outlines the first study, while some of the more speculative ideas will need further investigations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا