Do you want to publish a course? Click here

Large Size GEM for Super Bigbite Spectrometer (SBS) Polarimeter for Hall A 12 GeV program at JLab

91   0   0.0 ( 0 )
 Added by Kondo Gnanvo
 Publication date 2014
  fields Physics
and research's language is English
 Authors Kondo Gnanvo




Ask ChatGPT about the research

We report on the R&D effort in the design and construction of a large size Gas Electron Multiplier (GEM) for the Proton Polarimeter Back Tracker (BT) of the Super Bigbite Spectrometer (SBS) in Hall A at Thomas Jefferson National Laboratory (JLab). The SBS BT GEM trackers consist of two sets of five large GEM xchambers of size 60 x 200 cm2. The GEM chamber is a vertical stack of four GEM modules, each with an active area of 60 x 50 cm2. We have built and tested several prototypes and the construction of GEM modules for SBS BT is ongoing. We describe in this paper the design and construction of the GEM module prototype as well as the preliminary results on performance from tests carried out in our detector lab and during test beam at Fermi National Laboratory (Fermilab).



rate research

Read More

99 - T. Horn , V.V. Berdnikov , S. Ali 2019
This paper discusses the quality and performance of currently available PbWO$_4$ crystals of relevance to high-resolution electromagnetic calorimetry, e.g. detectors for the Neutral Particle Spectrometer at Jefferson Lab or those planned for the Electron-Ion Collider. Since the construction of the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) and early PANDA (The antiProton ANnihilations at DArmstadt) electromagnetic calorimeter (ECAL) the worldwide availability of high quality PbWO$_4$ production has changed dramatically. We report on our studies of crystal samples from SICCAS/China and CRYTUR/Czech Republic that were produced between 2014 and 2019.
This document outlines major directions in theoretical support for the measurement of nucleon resonance transition form factors at the JLab 12 GeV upgrade with the CLAS12 detector. Using single and double meson production, prominent resonances in the mass range up to 2 GeV will be studied in the range of photon virtuality $Q^2$ up to 12 GeV$^2$ where quark degrees of freedom are expected to dominate. High level theoretical analysis of these data will open up opportunities to understand how the interactions of dressed quarks create the ground and excited nucleon states and how these interactions emerge from QCD. The paper reviews the current status and the prospects of QCD based model approaches that relate phenomenological information on transition form factors to the non-perturbative strong interaction mechanisms, that are responsible for resonance formation.
In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operating at highest interaction rate of $10~MHz$ for $Au+Au$ collision, after the first MUCH detector station in its inner radial ring will face a particle rate of $1~MHz/cm^2$. To operate at such a high particle density, GEM technology based detectors have been selected for the first two stations of MUCH. We have reported earlier the performance of several small-size GEM detector prototypes built at VECC for use in MUCH. In this work, we report on a large GEM chamber prototype tested with proton beam of momentum $2.36~GeV/c$ at COSY-J{u}elich Germany. The detector was read out using nXYTER ASIC operated in self-triggering mode. An efficiency higher than $96%$ at $Delta V_{GEM}~=~375.2~V$ was achieved. The variation of efficiency with the rate of incoming protons has been found to vary within $2%$ when tested up to a maximum rate of $2.8~MHz/cm^2$. The gain was found to be stable at high particle rate with a maximum variation of $sim~9%$.
We report on the design and commissioning of two silica aerogel Cherenkov detectors with different refractive indices. In particular, extraordinary performance in terms of the number of detected photoelectrons was achieved through an appropriate choice of PMT type and reflector, along with some design considerations. After four years of operation, the number of detected photoelectrons was found to be noticeably reduced in both detectors as a result of contamination, yellowing, of the aerogel material. Along with the details of the set-up, we illustrate the characteristics of the detectors during different time periods and the probable causes of the contamination. In particular we show that the replacement of the contaminated aerogel and parts of the reflecting material has almost restored the initial performance of the detectors.
The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped GSO crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا