Do you want to publish a course? Click here

Measurement of collective excitations in a spin-orbit-coupled Bose-Einstein condensate

172   0   0.0 ( 0 )
 Added by Peter Engels
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the collective excitation spectrum of a spin-orbit coupled Bose-Einstein condensate using Bragg spectroscopy. The spin-orbit coupling is generated by Raman dressing of atomic hyperfine states. When the Raman detuning is reduced, mode softening at a finite momentum is revealed, which provides insight towards a supersolid-like phase transition. We find that for the parameters of our system, this softening stops at a finite excitation gap and is symmetric under a sign change of the Raman detuning. Finally, using a moving barrier that is swept through the BEC, we also show the effect of the collective excitation on the fluid dynamics.



rate research

Read More

We study topologically non-trivial excitations of a weakly interacting, spin-orbit coupled Bose-Einstein condensate in a two-dimensional square optical lattice, a system recently realized in experiment [W. Sun et al., Phys. Rev. Lett. 121, 150401 (2018)]. We focus on situations where the system is not subjected to a Zeeman field and thus does not exhibit nontrivial single-particle band topology. Of special interest then is the role of particle interaction as well as its interplay with the symmetry properties of the system in producing topologically non-trivial excitations. We find that the non-interacting system possesses a rich set of symmetries, including the $mathcal{PT}$ symmetry, the modified dihedral point group symmetry $tilde D_4$ and the nonsymmorphic symmetry. These combined symmetries ensure the existence of pairs of degenerate Dirac points at the edge of Brillouin zone for the single-particle energy bands. In the presence of particle interaction and with sufficient spin-orbit coupling, the atoms condense in a ground state with net magnetization which spontaneously breaks the $mathcal{PT}$ and $tilde D_4$ symmetry. We demonstrate that this symmetry breaking leads to a gap opening at the Dirac point for the Bogoliubov spectrum and consequentially topologically non-trivial excitations. We confirm the non-trivial topology by calculating the Chern numbers of the lowest excitation bands and show that gapless edge states form at the interface of systems characterized by different values of the Chern number.
254 - Li Chen , Yunbo Zhang , 2020
We study the spin squeezing in a spin-1/2 Bose-Einstein condensates (BEC) with Raman induced spin-orbit coupling (SOC). Under the condition of two-photon resonance and weak Raman coupling strength, the system possesses two degenerate ground states, using which we construct an effective two-mode model. The Hamiltonian of the two-mode model takes the form of the one-axis-twisting Hamiltonian which is known to generate spin squeezing. More importantly, we show that the SOC provides a convenient control knob to adjust the spin nonlinearity responsible for spin squeezing. Specifically, the spin nonlinearity strength can be tuned to be comparable to the two-body density-density interaction, hence is much larger than the intrinsic spin-dependent interaction strength in conventional two-component BEC systems such as $^{87}$Rb and $^{23}$Na in the absence of the SOC. We confirm the spin squeezing by carrying out a fully beyond-mean-field numerical calculation using the truncated Wigner method. Additionally, the experimental implementation is also discussed.
We have measured the effect of dipole-dipole interactions on the frequency of a collective mode of a Bose-Einstein condensate. At relatively large numbers of atoms, the experimental measurements are in good agreement with zero temperature theoretical predictions based on the Thomas Fermi approach. Experimental results obtained for the dipolar shift of a collective mode show a larger dependency to both the trap geometry and the atom number than the ones obtained when measuring the modification of the condensate aspect ratio due to dipolar forces. These findings are in good agreement with simulations based on a gaussian ansatz.
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO coupled Bose-Einstein condensate (BEC) have been extensively studied in both theory and experiment. Here we numerically investigate the generation and propagation of a textit{dynamical} spin-density wave (SDW) in a SO coupled BEC using a fast moving Gaussian-shaped barrier. We find that the SDW wavelength is sensitive to the barriers velocity while varies slightly with the barriers peak potential or width. We qualitatively explain the generation of SDW by considering a rectangular barrier in a one dimensional system. Our results may motivate future experimental and theoretical investigations of rich dynamics in the SO coupled BEC induced by a moving barrier.
A negative effective mass can be realized in quantum systems by engineering the dispersion relation. A powerful method is provided by spin-orbit coupling, which is currently at the center of intense research efforts. Here we measure an expanding spin-orbit coupled Bose-Einstein condensate whose dispersion features a region of negative effective mass. We observe a range of dynamical phenomena, including the breaking of parity and of Galilean covariance, dynamical instabilities, and self-trapping. The experimental findings are reproduced by a single-band Gross-Pitaevskii simulation, demonstrating that the emerging features - shockwaves, soliton trains, self-trapping, etc. - originate from a modified dispersion. Our work also sheds new light on related phenomena in optical lattices, where the underlying periodic structure often complicates their interpretation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا