Do you want to publish a course? Click here

Whittaker modules for the derivation Lie algebra of torus with two variables

462   0   0.0 ( 0 )
 Added by Xiufu Zhang
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Let $mathcal{L}$ be the derivation Lie algebra of ${mathbb C}[t_1^{pm 1},t_2^{pm 1}]$. Given a triangle decomposition $mathcal{L} =mathcal{L}^{+}oplusmathfrak{h}oplusmathcal{L}^{-}$, we define a nonsingular Lie algebra homomorphism $psi:mathcal{L}^{+}rightarrowmathbb{C}$ and the universal Whittaker $mathcal{L}$-module $W_{psi}$ of type $psi$. We obtain all Whittaker vectors and submodules of $W_{psi}$, and all simple Whittaker $mathcal{L}$-modules of type $psi$.



rate research

Read More

In this paper, the property and the classification the simple Whittaker modules for the schr{o}dinger algebra are studied. A quasi-central element plays an important role in the study of Whittaker modules of level zero. For the Whittaker modules of nonzero level, our arguments use the Casimir element of semisimple Lie algebra $sl_2$ and the description of simple modules over conformal Galilei algebras by R. L{u}, V. Mazorchuk and K. Zhao.
304 - Xiufu Zhang , Shaobin Tan 2009
In this paper, Whittaker modules for the Schrodinger-Virasoro algebra $mathfrak{sv}$ are defined. The Whittaker vectors and the irreducibility of the Whittaker modules are studied. $mathfrak{sv}$ has a triangular decomposition according to the Cartan algebra $mathfrak{h}:$ $$mathfrak{sv}=mathfrak{sv}^{-}oplusmathfrak{h}oplusmathfrak{sv}^{+}.$$ For any Lie algebra homomorphism $psi:mathfrak{sv}^{+}tomathbb{C}$, we can define Whittaker modules of type $psi.$ When $psi$ is nonsingular, the Whittaker vectors, the irreducibility and the classification of Whittaker modules are completely determined. When $psi$ is singular, by constructing some special Whittaker vectors, we find that the Whittaker modules are all reducible. Moreover, we get some more precise results for special $psi$.
Let ${mathcal W}_n$ be the Lie algebra of polynomial vector fields. We classify simple weight ${mathcal W}_n$-modules $M$ with finite weight multiplicities. We prove that every such nontrivial module $M$ is either a tensor module or the unique simple submodule in a tensor module associated with the de Rham complex on $mathbb C^n$.
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
113 - Mengnan Niu , Genqiang Liu 2020
For a commutative algebra $A$ over $mathbb{C}$,denote $mathfrak{g}=text{Der}(A)$. A module over the smash product $A# U(mathfrak{g})$ is called a jet $mathfrak{g}$-module, where $U(mathfrak{g})$ is the universal enveloping algebra of $mathfrak{g}$.In the present paper, we study jet modules in the case of $A=mathbb{C}[t_1^{pm 1},t_2]$.We show that $A#U(mathfrak{g})congmathcal{D}otimes U(L)$, where $mathcal{D}$ is the Weyl algebra $mathbb{C}[t_1^{pm 1},t_2, frac{partial}{partial t_1},frac{partial}{partial t_2}]$, and $L$ is a Lie subalgebra of $A# U(mathfrak{g})$ called the jet Lie algebra corresponding to $mathfrak{g}$.Using a Lie algebra isomorphism $theta:L rightarrow mathfrak{m}_{1,0}Delta$, where $mathfrak{m}_{1,0}Delta$ is the subalgebra of vector fields vanishing at the point $(1,0)$, we show that any irreducible finite dimensional $L$-module is isomorphic to an irreducible $mathfrak{gl}_2$-module. As an application, we give tensor product realizations of irreducible jet modules over $mathfrak{g}$ with uniformly bounded weight spaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا