Galaxy Cosmological Mass Function


Abstract in English

We study the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach using observational data provided by galaxy redshift surveys. Starting from the theory of Ribeiro & Stoeger (2003, arXiv:astro-ph/0304094) between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity $L$ and the average galactic mass $mathcal{M}_g$ are computed in terms of the redshift. $mathcal{M}_g$ is also alternatively estimated by a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allows us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range $0.5 < z < 5.0$ and its LF Schechter parameters in the B-band, as well as this samples stellar mass-to-light ratio and its GSMF data. Assuming ${mathcal{M}_{g_0}} approx 10^{11} mathcal{M}_odot$ as the local value of the average galactic mass, the LF approach results in $L_{B} propto (1+z)^{(2.40 pm 0.03)}$ and $mathcal{M}_g propto (1+z)^{(1.1pm0.2)}$. However, using the GSMF results produces $mathcal{M}_g propto (1+z)^{(-0.58 pm 0.22)}$. We chose the latter result as it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to calculate the GCMF, which can be fitted by a Schechter function. The derived GCMF follows theoretical predictions in which the less massive objects form first, being followed later by more massive ones. In the range $0.5 < z < 2.0$ the GCMF has a strong variation that can be interpreted as a higher rate of galaxy mergers or as a strong evolution in the star formation history of these galaxies.

Download