Do you want to publish a course? Click here

In situ characterisation of nanoscale electromechanical properties of quasi-two-dimensional MoS2 and MoO3

262   0   0.0 ( 0 )
 Added by Sharath Sriram
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Precise manipulation of electronic band structures of two-dimensional (2D) transition metal dichalcogenides and oxides (TMD&Os) via localised strain engineering is an exciting avenue for exploiting their unique characteristics for electronics, optoelectronics, and nanoelectromechanical systems (NEMS) applications. This work experimentally demonstrates that mechanically-induced electrical transitions can be engineered in quasi-2D molybdenum disulphide (MoS2) and molybdenum trioxide (MoO3) using an in situ electrical nanoindentation technique. It is shown that localised strains on such quasi-2D layers can induce carrier transport alterations, thereby changing their electrical conduction behaviour. Such strain effects offer a potential tool for precisely manipulating the electronic transport properties of 2D TMD&Os, and understanding the interactions of the atomic electronic states in such layered materials.



rate research

Read More

Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D on-stack chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.
We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. The Raman spectroscopy was conducted using three different excitation lasers with the wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). The resonant UV-Raman spectroscopy reveals new spectral features, which are not detectable via visible Raman light scattering. The thermal conductivity of FePS3 and MnPS3 thin films was measured by two different techniques: the steady-state Raman optothermal and transient time-resolved magneto-optical Kerr effect. The Raman optothermal measurements provided the orientation-average thermal conductivity of FePS3 to be 1.35 W/mK at room temperature. The transient measurements revealed that the through-plane and in-plane thermal conductivity of FePS3 is 0.85 W/mK and 2.7 W/mK, respectively. The films of MnPS3 have higher thermal conductivity of 1.1 W/mK through-plane and 6.3 W/mK in-plane. The data obtained by both techniques reveal strong thermal anisotropy of the films and the dominant contribution of phonons to heat conduction. Our results are important for the proposed applications of the antiferromagnetic semiconductor thin films in spintronic devices.
Stannous selenide is a layered semiconductor that is a polar analogue of black phosphorus, and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle resolved photo-emission spectroscopy, optical reflection spectroscopy and magnetotransport measurements reveal a multiple-valley valence band structure and a quasi two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to $250~mathrm{cm^2/Vs}$ at $T=1.3~mathrm{K}$. SnSe is thus found to be a high quality, quasi two-dimensional semiconductor ideal for thermoelectric applications.
The anisotropic nature of the new two-dimensional (2D) material phosphorene, in contrast to other 2D materials such as graphene and transition metal dichalcogenide (TMD) semiconductors, allows excitons to be confined in a quasi-one-dimensional (1D) space predicted in theory, leading to remarkable phenomena arising from the reduced dimensionality and screening. Here, we report a trion (charged exciton) binding energy of 190 meV in few-layer phosphorene at room temperature, which is nearly one to two orders of magnitude larger than those in 2D TMD semiconductors (20-30 meV) and quasi-2D quantum wells (1-5 meV). Such a large binding energy has only been observed in truly 1D materials such as carbon nanotubes, whose optoelectronic applications have been severely hurdled by their intrinsically small optical cross-sections. Phosphorene offers an elegant way to overcome this hurdle by enabling quasi-1D excitonic and trionic behaviors in a large 2D area, allowing optoelectronic integration. We experimentally validated the quasi-1D nature of excitonic and trionic dynamics in phospherene by demonstrating completely linearly polarized light emission from excitons and trions. The implications of the extraordinarily large trion binding energy in a higher-than-one-dimensional material are far-reaching. It provides a room-temperature 2D platform to observe the fundamental many-body interactions in the quasi-1D region. The strong photoluminescence emission in phosphorene has been electrically tuned over a large spectral range at room temperature, which opens a new route for tunable light sources.
Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to image and understand the rich properties of magnetic domains. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr$_3$. The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism with a saturation magnetization of about 26~$mu_B$/nm$^2$ for bilayer CrBr$_3$. The magnetic-domain structure and pinning-effect dominated domain reversal process are verified by micromagnetic simulation. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore two-dimensional magnetism at the nanoscale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا