Do you want to publish a course? Click here

Investigating the inner discs of Herbig Ae/Be stars with CO bandhead and Br Gamma emission

180   0   0.0 ( 0 )
 Added by John Ilee
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Herbig Ae/Be stars lie in the mass range between low and high mass young stars, and therefore offer a unique opportunity to observe any changes in the formation processes that may occur across this boundary. This paper presents medium resolution VLT/X-Shooter spectra of six Herbig Ae/Be stars, drawn from a sample of 91 targets, and high resolution VLT/CRIRES spectra of five Herbig Ae/Be stars, chosen based on the presence of CO first overtone bandhead emission in their spectra. The X-Shooter survey reveals a low detection rate of CO first overtone emission (7 per cent), consisting of objects mainly of spectral type B. A positive correlation is found between the strength of the CO v=2-0 and Br {gamma} emission lines, despite their intrinsic linewidths suggesting a separate kinematic origin. The high resolution CRIRES spectra are modelled, and are well fitted under the assumption that the emission originates from small scale Keplerian discs, interior to the dust sublimation radius, but outside the co-rotation radius of the central stars. In addition, our findings are in very good agreement for the one object where spatially resolved near-infrared interferometric studies have also been performed. These results suggest that the Herbig Ae/Be stars in question are in the process of gaining mass via disc accretion, and that modelling of high spectral resolution spectra is able to provide a reliable probe into the process of stellar accretion in young stars of intermediate to high masses.



rate research

Read More

75 - Jorick S. Vink 2002
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in circumstellar discs. A second outcome of our study is that the spectropolarimetric signatures for the lower mass Herbig Ae stars differ from those of the higher mass Herbig Be stars. Depolarisations across H_alpha are observed in the Herbig Be group, whereas line polarisations are common amongst the Herbig Ae stars in our sample. These line polarisation effects can be understood in terms of a compact H_alpha source that is polarised by a rotating disc-like configuration. The difference we detect between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung-Russell Diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. However, it is also possible that the compact polarised line component, present in the Herbig Ae stars, is masked in the Herbig Be stars due to their higher levels of H_alpha emission.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
153 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which suggests that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
We present spatially and spectrally resolved Br-gamma emission around the planet-hosting, transitional Herbig Ae/Be star HD 100546. Aiming to gain insight into the physical origin of the line in possible relation to accretion processes, we carried out Br-gamma spectro-interferometry using AMBER/VLTI from three different baselines achieving spatial and spectral resolutions of 2-4 mas and 12000. The Br-gamma visibility is larger than that of the continuum for all baselines. Differential phases reveal a shift between the photocentre of the Br-gamma line -displaced 0.6 mas (0.06 au at 100 pc) NE from the star- and that of the K-band continuum emission -displaced 0.3 mas NE from the star. The photocentres of the redshifted and blueshifted components of the Br-gamma line are located NW and SE from the photocentre of the peak line emission, respectively. Moreover, the photocentre of the fastest velocity bins within the spectral line tends to be closer to that of the peak emission than the photocentre of the slowest velocity bins. Our results are consistent with a Br-gamma emitting region inside the dust inner rim (<0.25 au) and extending very close to the central star, with a Keplerian, disc-like structure rotating counter-clockwise, and most probably flared (25 deg). Even though the main contribution to the Br-gamma line does not come from gas magnetically channelled on to the star, accretion on to HD 100546 could be magnetospheric, implying a mass accretion rate of a few 10^-7 Msun/yr. This value indicates that the observed gas has to be replenished on time-scales of a few months to years, perhaps by planet-induced flows from the outer to the inner disc as has been reported for similar systems.
We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also similar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the PAH luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is not a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا