No Arabic abstract
Printed circuit boards (PCBs) are widely used in most electrical and electronic equipments or products. Hazardous substances such as Pb, Hg, Cd, etc, can be present in high concentrations in PCBs and the degradation and release of these substances poses a huge threat to humans and the environment. To investigation the chemical composition of PCBs in domestic market of China, a practical micro-focus X-ray fluorescence system is setup to make the elements analysis, especially for detecting hazardous substances. Collimator is adopted to focus the X-ray emitted from X-ray tube. BRUKER X-ray detector with proportional counter is used to detect the emitted fluorescence from the PCB samples. Both single layer PCB samples and double layers PCB samples made of epoxy glass fiber are purchased from the domestic market of China. Besides, a MC55 wireless communication module made by SIEMENS in Germany is used as the reference material. Experimental results from the fluorescence spectrums of the testing points of PCB samples show that, hazardous substances, mainly Pb and Br, are detected from the welding pads and substrates. In addition, statistical data about the average relatively amount of the main substances in testing points are also illustrated. It is verified that micro-XRF screening offers a simple and quick qualitative measurement of hazardous substances in PCBs.
Dispersion studies demonstrate that waveguide layout can be used to enhance the bandwidth performance of multimode polymer waveguides for use in board-level optical interconnects, providing >40 GHzxm without the need for any launch conditioning.
We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in x-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We have implemented a system containing four nested Ni mirror pairs, which was tested by focusing a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection, and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.
Transition Edge Sensor (TES) spectrometers for hard X-ray beamline science will enable improved X-ray emission and absorption spectroscopy in the information-rich 2 to 20 keV energy range. We are building a TES-based instrument for the Advanced Photon Source (APS) synchrotron, to be made available to beamline users. 24-pixel prototype arrays have recently been fabricated and tested. The first spectroscopy measurements using these arrays are promising, with a best single-pixel energy resolution of 11.2 eV and saturation energy > 20 keV. We present a series of recent X-ray Fluorescence measurements involving transition metal elements and multi-element samples with closely spaced emission lines, in particular a Cu-Ni-Co thin film and a foil of Cu and Hf. The TES-measured spectra are directly compared to spectra measured with silicon drift detectors at an APS beamline, demonstrating the improved X-ray science made possible by TES spectrometers.
An experimental and computational investigation of the space-charge effects occurring in ultrafast photoelectron spectroscopy from the gas phase is presented. The target sample CF$_3$I is excited by ultrashort (100 fs) far-ultraviolet radiation pulses produced by a free-electron laser. The modification of the energy distribution of the photoelectrons, i.e. the shift and broadening of the spectral structures, is monitored as a function of the pulse intensity. The experimental results are compared with computational simulations which employ a Barnes-Hut algorithm to calculate the effect of individual Coulomb forces acting among the particles. In the presented model, a survey spectrum acquired at low radiation fluence is used to determine the initial energy distribution of the electrons after the photoemission event. The spectrum modified by the space-charge effects is then reproduced by $N$-body calculations that simulate the dynamics of the photoelectrons subject to the individual mutual Coulomb repulsion and to the attractive force of the positive ions. The employed numerical method accounts for the space-charge effects on the energy distribution and allows to reproduce the complete photoelectron spectrum and not just a specific photoemission structure. The simulations also provide information on the time evolution of the space-charge effects on the picosecond scale. Differences with the case of photoemission from solid samples are highlighted and discussed. The presented simulation procedure, although it omits the analysis of angular distribution, constitutes an effective simplified model that allows to predict and account for space-charge effects on the photoelectron energy spectrum in time-resolved photoemission experiments with high-intensity pulsed sources.
Accurate characterization of the inner surface of X-ray monocapillary optics (XMCO) is of great significance in X-ray optics research. Compared with other characterization methods, the micro computed tomography (micro-CT) method has its unique advantages but also has some disadvantages, such as a long scanning time, long image reconstruction time, and inconvenient scanning process. In this paper, sparse sampling was proposed to shorten the scanning time, GPU acceleration technology was used to improve the speed of image reconstruction, and a simple geometric calibration algorithm was proposed to avoid the calibration phantom and simplify the scanning process. These methodologies will popularize the use of the micro-CT method in XMCO characterization.