Direct observation of charge mediated lattice distortions in complex oxide solid solutions


Abstract in English

Material properties depend sensitively on picometer scale atomic displacements introduced by local chemical fluctuations. Direct real-space, high spatial-resolution measurements of this compositional variation and corresponding distortion can provide new insights into materials behavior at the atomic scale. Using aberration corrected scanning transmission electron microscopy combined with advanced imaging methods, we observed atom column specific, picometer-scale displacements induced by local chemistry in a complex oxide solid solution. Displacements predicted from density functional theory were found to correlate with the observed experimental trends. Further analysis of bonding and charge distribution were used to clarify the mechanisms responsible for the detected structural behavior. By extending the experimental electron microscopy measurements to previously inaccessible length scales, we identified correlated atomic displacements linked to bond differences within the complex oxide structure.

Download