Synchronising ultra-short (~fs) and focussed laser pulses is a particularly difficult task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for femtosecond-scale synchronisation of the focal planes of two focussed laser pulses. This technique is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for the next generation of multiple, petawatt class laser systems.
We discuss the properties of pure multipole beams with well-defined handedness or helicity, with the beam field a simultaneous eigenvector of the squared total angular momentum and its projection along the propagation axis. Under the condition of hemispherical illumination, we show that the only possible propagating multipole beams are `sectoral multipoles. The sectoral dipole beam is shown to be equivalent to the non-singular time-reversed field of an electric and a magnetic point dipole Huygens source located at the beam focus. Higher order multipolar beams are vortex beams vanishing on the propagation axis. The simple analytical expressions of the electric field of sectoral multipole beams, exact solutions of Maxwells equations, and the peculiar behaviour of the Poynting vector and spin and orbital angular momenta in the focal volume could help to understand and model light-matter interactions under strongly focused beams.
The generation of ultra-relativistic positron beams with short duration ($tau_{e^+} leq 30$ fs), small divergence ($theta_{e^+} simeq 3$ mrad), and high density ($n_{e^+} simeq 10^{14} - 10^{15}$ cm$^{-3}$) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and $gamma$-rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.
The effect of femtosecond laser irradiation on bulk and single-layer MoS2 on silicon oxide is studied. Optical, Field Emission Scanning Electron Microscopy (FESEM) and Raman microscopies were used to quantify the damage. The intensity of A1g and E2g1 vibrational modes was recorded as a function of the number of irradiation pulses. The observed behavior was attributed to laser-induced bond breaking and subsequent atoms removal due to electronic excitations. The single-pulse optical damage threshold was determined for the monolayer and bulk under 800nm and 1030nm pulsed laser irradiation and the role of two-photon versus one photon absorption effects is discussed.
Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental important. Through near-field plasmon imaging, we demonstrate controllable modifying of the reflection of graphene plasmon at boundaries etched by ion beams. Moreover, by varying ion dose at a proper value, nature like reflection boundary can be obtained. We also investigate the influence of ion beam incident angle on plasmon reflection. To illustrate the application of ion beam etching, a simple graphene wedge-shape plasmon structure is fabricated and performs excellently, proving this technology as a simple and efficient tool for controlling graphene plasmons.
Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this paper, we demonstrate this particular aspect by using an all-optical point-like source of continuous spin waves based on frequency comb rapid demagnetization. The emitted spin waves contain a range of k-vectors and by detuning the applied magnetic field slightly off the ferromagnetic resonance (FMR), we observe X-shaped caustic spin-wave patterns at $70^{circ}$ propagation angles as predicted by theory. When the harmonic of the light source approaches theFMR, the caustic pattern gives way to uniaxial spin-wave propagation perpendicular to the in-plane component of the applied field. This field-controlled propagation pattern and directionality of optically emitted short-wavelength spin waves provide additional degrees of freedom when designing magnonic devices.