Generalized Bundle Shift with Application to Multiplication operator on the Bergman space


Abstract in English

Following upon results of Putinar, Sun, Wang, Zheng and the first author, we provide models for the restrictions of the multiplication by a finite Balschke product on the Bergman space in the unit disc to its reducing subspaces. The models involve a generalization of the notion of bundle shift on the Hardy space introduced by Abrahamse and the first author to the Bergman space. We develop generalized bundle shifts on more general domains. While the characterization of the bundle shift is rather explicit, we have not been able to obtain all the earlier results appeared, in particular, the facts that the number of the minimal reducing subspaces equals the number of connected components of the Riemann surface $B(z)=B(w)$ and the algebra of commutant of $T_{B}$ is commutative, are not proved. Moreover, the role of the Riemann surface is not made clear also.

Download