In this note, we exhibit infinite families of tight non-fillable contact manifolds supported by planar open books with vanishing Heegaard Floer contact invariants. Moreover, we also exhibit an infinite such family where the supported manifold is hyperbolic.
We give combinatorial descriptions of the Heegaard Floer homology groups for arbitrary three-manifolds (with coefficients in Z/2). The descriptions are based on presenting the three-manifold as an integer surgery on a link in the three-sphere, and then using a grid diagram for the link. We also give combinatorial descriptions of the mod 2 Ozsvath-Szabo mixed invariants of closed four-manifolds, in terms of grid diagrams.
We compute the involutive Heegaard Floer homology of the family of three-manifolds obtained by plumbings along almost-rational graphs. (This includes all Seifert fibered homology spheres.) We also study the involutive Heegaard Floer homology of connected sums of such three-manifolds, and explicitly determine the involutive correction terms in the case that all of the summands have the same orientation. Using these calculations, we give a new proof of the existence of an infinite-rank subgroup in the three-dimensional homology cobordism group.
We describe some of the algebra underlying the decomposition of planar grid diagrams. This provides a useful toy model for an extension of Heegaard Floer homology to 3-manifolds with parametrized boundary. This paper is meant to serve as a gentle introduction to the subject, and does not itself have immediate topological applications.
We give new tightness criteria for positive surgeries along knots in the 3-sphere, generalising results of Lisca and Stipsicz, and Sahamie. The main tools will be Honda, Kazez and Matics, Ozsvath and Szabos Floer-theoretic contact invariants. We compute the Ozsvath and Szabos invariant of positive contact surgeries along Legendrian knots in the 3-sphere in terms of the classical invariants of the knot. We also combine a Legendrian cabling construction with contact surgeries to get results about rational contact surgeries.
Recently, there have been several breakthroughs in the classification of tight contact structures. We give an outline on how to exploit methods developed by Ko Honda and John Etnyre to obtain classification results for specific examples of small Seifert manifolds.