Do you want to publish a course? Click here

Probing the Intergalactic Medium with Fast Radio Bursts

302   0   0.0 ( 0 )
 Added by Zheng Zheng
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the HeII reionization and the IGM magnetic field. Finally we calculate the microlensing effect from an isolate, extragalctic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.



rate research

Read More

102 - Siyao Xu , Bing Zhang 2020
The turbulence in the diffuse intergalactic medium (IGM) plays an important role in various astrophysical processes across cosmic time, but it is very challenging to constrain its statistical properties both observationally and numerically. Via the statistical analysis of turbulence along different sightlines toward a population of fast radio bursts (FRBs), we demonstrate that FRBs provide a unique tool to probe the intergalactic turbulence. We measure the structure function (SF) of dispersion measures (DMs) of FRBs to study the multi-scale electron density fluctuations induced by the intergalactic turbulence. The SF has a large amplitude and a Kolmogorov power-law scaling with angular separations, showing large and correlated DM fluctuations over a range of length scales. Given that the DMs of FRBs are IGM dominated, our result tentatively suggests that the intergalactic turbulence has a Kolmogorov power spectrum and an outer scale on the order of $100$ Mpc.
141 - Di Xiao , Fayin Wang , 2021
In 2007, a very bright radio pulse was identified in the archival data of the Parkes Telescope in Australia, marking the beginning of a new research branch in astrophysics. In 2013, this kind of millisecond bursts with extremely high brightness temperature takes a unified name, fast radio burst (FRB). Over the first few years, FRBs seemed very mysterious because the sample of known events was limited. With the improvement of instruments over the last five years, hundreds of new FRBs have been discovered. The field is now undergoing a revolution and understanding of FRB has rapidly increased as new observational data increasingly accumulates. In this review, we will summarize the basic physics of FRBs and discuss the current research progress in this area. We have tried to cover a wide range of FRB topics, including the observational property, propagation effect, population study, radiation mechanism, source model, and application in cosmology. A framework based on the latest observational facts is now under construction. In the near future, this exciting field is expected to make significant breakthroughs.
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within $sim$ 140 s. The data were searched for pulses up to 5000 pc $rm cm^{-3}$ in dispersion measure and pulse widths ranging from 640 $rm mu$s to 25.60 ms. We did not detect any events $rm geq 6 sigma$. An in-depth statistical analysis of our data shows that events detected above $rm 5 sigma$ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
We analyze the sources of free electrons that produce the large dispersion measures, DM $approx 300-1600$ (in units cm$^{-3}$ pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce DM $sim 25-60$ cm$^{-3}$ pc from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift $z$, a homogeneous IGM containing a fraction $f_{rm IGM}$ of cosmological baryons will produce DM $= (935~{rm cm}^{-3}~{rm pc}) f_{rm IGM} , h_{70}^{-1} I(z)$, where $I(z) = (2/3 Omega_m)[ { Omega_m(1+z)^3 + Omega_{Lambda} }^{1/2} - 1 ]$. A structured IGM of photoionized Ly-alpha absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, $f_b(N,z)$, of H I (Lya-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM($z$) applied to observed FRB dispersions suggests that $z_{rm FRB} approx 0.2-1.5$ for an IGM containing a significant baryon fraction, $f_{rm IGM} = 0.6pm0.1$. Future surveys of the statistical distribution, DM($z)$, of FRBs identified with specific galaxies and redshifts, can be used to calibrate the IGM baryon fraction and distribution of Ly-alpha absorbers. Fluctuations in DM at the level $pm10$ cm$^{-3}$ pc will arise from filaments and voids in the cosmic web.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا