Do you want to publish a course? Click here

An introduction to quantum machine learning

356   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessable way, and discusses the potential of a future theory of quantum learning.



rate research

Read More

147 - John E. Gough 2018
The following notes are based on lectures delivered at the research school Modeling and Control of Open Quantum Systems (Mod{e}lisation et contr^{o}le des syst`{e}mes quantiques ouverts) at CIRM, Marseille, 16-20 April, 2018, as part of the Trimester textit{Measurement and Control of Quantum Systems: Theory and Experiments} organized at Institut Henri Poincar{e}, Paris, France. The aim is to introduce quantum filtering to an audience with a background in either quantum theory or classical filtering.
378 - Daniel Ratner 2020
This pair of CAS lectures gives an introduction for accelerator physics students to the framework and terminology of machine learning (ML). We start by introducing the language of ML through a simple example of linear regression, including a probabilistic perspective to introduce the concepts of maximum likelihood estimation (MLE) and maximum a priori (MAP) estimation. We then apply the concepts to examples of neural networks and logistic regression. Next we introduce non-parametric models and the kernel method and give a brief introduction to two other machine learning paradigms, unsupervised and reinforcement learning. Finally we close with example applications of ML at a free-electron laser.
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at graduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state-of-the-art topics in this exciting and rapidly developing research field.
Boson-sampling is a simplified model for quantum computing that may hold the key to implementing the first ever post-classical quantum computer. Boson-sampling is a non-universal quantum computer that is significantly more straightforward to build than any universal quantum computer proposed so far. We begin this chapter by motivating boson-sampling and discussing the history of linear optics quantum computing. We then summarize the boson-sampling formalism, discuss what a sampling problem is, explain why boson-sampling is easier than linear optics quantum computing, and discuss the Extended Church-Turing thesis. Next, sampling with other classes of quantum optical states is analyzed. Finally, we discuss the feasibility of building a boson-sampling device using existing technology.
81 - Gregory Berkolaiko 2016
We describe some basic tools in the spectral theory of Schrodinger operator on metric graphs (also known as quantum graph) by studying in detail some basic examples. The exposition is kept as elementary and accessible as possible. In the later sections we apply these tools to prove some results on the count of zeros of the eigenfunctions of quantum graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا