Composite Stellar Populations and Element by Element Abundances in the Milky Way Bulge and Elliptical Galaxies


Abstract in English

This paper explores the integrated-light characteristics of the Milky Way (MW) bulge and to what extent they match those of elliptical galaxies in the local universe. We model composite stellar populations with realistic abundance distribution functions (ADFs), tracking the trends of individual elements as a function of overall heavy element abundance as actually observed in MW bulge stars. The resultant predictions for absorption feature strengths from the MW bulge mimic elliptical galaxies better than solar neighborhood stars do, but the MW bulge does not match elliptical galaxies, either. Comparing bulge versus elliptical galaxies, Fe, Ti, and Mg trend about the same for both but C, Na, and Ca seem irreconcilably different. Exploring the behavior of abundance compositeness leads to the concepts of red lean where a narrower ADF appears more metal rich than a wide one, and red spread where the spectral difference between wide and narrow ADFs increases as the ADF peak is moved to more metal-rich values. Tests on the systematics of recovering abundance, abundance pattern, and age from composite stellar populations using single stellar population models were performed. The chemical abundance pattern was recovered adequately, though a few minor systematic effects were uncovered. The prospects of measuring the width of the ADF of an old stellar population were investigated and seem bright using UV to IR photometry.

Download