Dynamics of magnetization and carriers at the onset of the photo-excited precession of magnetization in (Ga,Mn)As


Abstract in English

Photo-excited precession of magnetization in (Ga,Mn)As is investigated by measuring time-resolved magneto-optical response and transient differential reflectivity with pump-and-probe technique. In the time region less than 1 ps, rapidly oscillating and spike-like signals are observed, respectively, with excitation of below and above the GaAs band gap. Analysis with gyromagnetic model and autocorrelation function concludes that those signals are not attributed to ultrafast demagnetization but due to interference between pump and probe pulses incorporating sub-ps carrier dynamics characteristic of low-temperature grown semiconductors. Photo-ionization of Mn ions (Mn2+ -> Mn3+) is proposed as a mechanism which dynamically induces orbital angular momentum and affects hole-mediated magnetic anisotropy in (Ga,Mn)As.

Download