Inflation of small true vacuum bubble by quantization of Einstein-Hilbert action


Abstract in English

We study the quantization of the Einstein-Hilbert action for a small true vacuum bubble without matter or scalar field. The quantization of action induces an extra term of potential called quantum potential in Hamilton-Jacobi equation, which gives expanding solutions including the exponential expansion solutions of the scalar factor $a$ for the bubble. We show that exponential expansion of the bubble continues with a short period (about a Planck time $t_p$), no matter whether the bubble is closed, flat or open. The exponential expansion ends spontaneously when the bubble becomes large, i.e., the scalar factor $a$ of the bubble approaches a Planck length $l_p$. We show that it is quantum potential of the small true vacuum bubble that plays the role of the scalar field potential suggested in the slow-roll inflation model. With the picture of quantum tunneling, we calculate particle creation rate during inflation, which shows that particles created by inflation have the capability of reheating the universe.

Download