Collective regulation by non-coding RNA


Abstract in English

We study genetic networks that produce many species of non-coding RNA molecules that are present at a moderate density, as typically exists in the cell. The associations of the many species of these RNA are modeled physically, taking into account the equilibrium constants between bound and unbound states. By including the pair-wise binding of the many RNA species, the network becomes highly interconnected and shows different properties than the usual type of genetic network. It shows much more robustness to mutation, and also rapid evolutionary adaptation in an environment that oscillates in time. This provides a possible explanation for the weak evolutionary constraints seen in much of the non-coding RNA that has been studied.

Download