No Arabic abstract
Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their quiet main sequence phase and later on during their subgiant and helium burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions.
Simultaneously and coherently studying the large-scale magnetic field and the stellar pulsations of a massive star provides strong complementary diagnostics suitable for detailed stellar modelling. This hybrid method is called magneto-asteroseismology and permits the determination of the internal structure and conditions within magnetic massive pulsators, for example the effect of magnetism on non-standard mixing processes. Here, we overview this technique, its requirements, and list the currently known suitable stars to apply the method.
Until the last few decades, investigations of stellar interiors had been restricted to theoretical studies only constrained by observations of their global properties and external characteristics. However, in the last thirty years the field has been revolutionized by the ability to perform seismic investigations of stellar interiors. This revolution begun with the Sun, where helioseismology has been yielding information competing with what can be inferred about the Earths interior from geoseismology. The last two decades have witnessed the advent of asteroseismology of solar-like stars, thanks to a dramatic development of new observing facilities providing the first reliable results on the interiors of distant stars. The coming years will see a huge development in this field. In this review we focus on solar-type stars, i.e., cool main-sequence stars where oscillations are stochastically excited by surface convection. After a short introduction and a historical overview of the discipline, we review the observational techniques generally used, and we describe the theory behind stellar oscillations in cool main-sequence stars. We continue with a complete description of the normal mode analyses through which it is possible to extract the physical information about the structure and dynamics of the stars. We then summarize the lessons that we have learned and discuss unsolved issues and questions that are still unanswered.
The successful launches of the CoRoT and Kepler space missions have led to the detections of solar-like oscillations in large samples of red-giant stars. The large numbers of red giants with observed oscillations make it possible to investigate the properties of the sample as a whole: ensemble asteroseismology. In this article we summarise ensemble asteroseismology results obtained from data released by the Kepler Science Team (~150,000 field stars) as presented by Hekker et al. (2011b) and for the clusters NGC 6791, NGC 6811 and NGC 6819 (Hekker et al. 2011a) and we discuss the importance of such studies.
We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performance, and we can detect oscillations in subgiants having dominant oscillation frequencies around $1000,rm mu Hz$. Changes to the operation of the fine-guidance sensors are expected to give significant improvements in the high-frequency performance from C3 onwards. A reduction in the excess high-frequency noise by a factor of two-and-a-half in amplitude would bring main-sequence stars with dominant oscillation frequencies as high as ${simeq 2500},rm mu Hz$ into play as potential asteroseismic targets for K2.
Yearslong time series of high-precision brightness measurements have been assembled for thousands of stars with telescopes operating in space. Such data have allowed astronomers to measure the physics of stellar interiors via nonradial oscillations, opening a new avenue to study the stars in the Universe. Asteroseismology, the interpretation of the characteristics of oscillation modes in terms of the physical properties of the stellar interior, brought entirely new insights in how stars rotate and how they build up their chemistry throughout their evolution. Data-driven space asteroseismology delivered a drastic increase in the reliability of computer models mimicking the evolution of stars born with a variety of masses and metallicities. Such models are critical ingredients for modern physics as a whole, because they are used throughout various contemporary and multidisciplinary research fields in space science, including the search for life outside the solar system, archaeological studies of the Milky Way, and the study of single and binary supernova progenitors, among which are future gravitational wave sources. The specific role and potential of asteroseismology for those modern research fields are illustrated. The review concludes with current limitations of asteroseismology and highlights how they can be overcome with ongoing and future large infrastructures for survey astronomy combined with new theoretical research in the era of high-performance computing. This review presents results obtained through major community efforts over the past decade. These breakthroughs were achieved in a collaborative and inclusive spirit that is characteristic of the asteroseismology community. The reviews aim is to make this research field accessible to graduate students and readers coming from other fields of physics, with incentives to join future applications in this domain of astrophysics.