Do you want to publish a course? Click here

Central $mu^{+}mu^{-}$ production via photon-photon fusion in proton-proton collisions with proton dissociation

108   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We present a formalism which uses fluxes of equivalent photons including transverse momenta of the intermediate photons. The formalism reminds the familiar $k_t$-factorization approach used, e.g., to study the two-photon production of $cbar{c}$ or $bbar{b}$ pairs. The results of the new method are compared with those obtained using the code LPAIR, and a good agreement is obtained. The inclusion of the photon transverse momenta is necessary in studies of correlation observables. We present distributions for the dimuon invariant mass, transverse momentum of the muon pair and relative azimuthal angle between muons separately for elastic-elastic, elastic-inelastic, inelastic-elastic and inelastic-inelastic mechanisms. For typical experimental cuts all mechanisms give similar contributions. The results are shown for different sets of cuts relevant for the LHC experiments. The cross sections in different regions of phase space depend on $F_2$ structure function in different regions of $x$ and $Q^2$. A comment on $F_2$ is made.



rate research

Read More

We compute the leading order (LO) $qgto q gamma$ and next-to-leading order (NLO) $ggto q{bar q} gamma$ contributions to inclusive photon production in proton-proton (p+p) collisions at the LHC. These channels provide the dominant contribution at LO and NLO for photon transverse momenta $k_{gammaperp}$ corresponding to momentum fractions of $xleq 0.01$ in the colliding protons. Our computations, performed in the dilute-dense framework of the Color Glass Condensate effective field theory (CGC EFT), show that the NLO contribution dominates at small-$x$ because it is sensitive to $k_perp$-dependent unintegrated gluon distributions in both of the protons. We predict a maximal $10%$ modification of the cross section at low $k_{gammaperp}$ as a direct consequence of the violation of $k_perp$-factorization. The coherence effects responsible for this modification are enhanced in nuclei and can be identified from inclusive photon measurements in proton-nucleus collisions. We provide numerical results for the isolated inclusive photon cross section for $k_{gammaperp}leq 20$ GeV in p+p collisions that can be tested in the future at the LHC.
The shapes of invariant differential cross section for charged hadron production as function of hadrons transverse momentum and rapidity in ep collisions at HERA machine are considered. The particle spectra shapes observed in pp and gamma-gamma collisions before have shown very different properties. This difference could be directly measured in the mixed type collisions of photon and proton at HERA experiments.
We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/psi$ mesons in the same forward kinematics, consistently calculated in the same theoretical framework. We find that leading order, running coupling high energy evolution in the CGC picture leads to a significant nuclear suppression at forward rapidities. This nuclear suppression is stronger for photons than for pions. We also discuss how this might change with next-to-leading order high energy evolution.
We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that $k_perp$ and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small $x$. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.
155 - J. Cepila , 2011
Prompt photons produced in a hard reaction are not accompanied with any final state interaction, either energy loss or absorption. Therefore, besides the Cronin enhancement at medium transverse momenta pT and small isotopic corrections at larger pT, one should not expect any nuclear effects. However, data from PHENIX experiment exhibit a significant large-pT suppression in central d+Au and Au+Au collisions that cannot be accompanied by coherent phenomena. We demonstrate that such an unexpected result is subject to the energy sharing problem near the kinematic limit and is universally induced by multiple initial state interactions. We describe production of photons in the color dipole approach and find a good agreement with available data in p+p collisions. Besides explanation of large-pT nuclear suppression at RHIC we present for the first time predictions for expected nuclear effects also in the LHC energy range at different rapidities. We include and analyze also a contribution of gluon shadowing as a leading twist shadowing correction modifying nuclear effects at small and medium pT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا