Do you want to publish a course? Click here

The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

132   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger fractions and rates from the ALHAMBRA survey are in excellent agreement with those from spectroscopic work, both for the general population and for red and blue galaxies. With the merger rate of bright (M_B <= -20 - 1.1z) galaxies evolving as (1+z)^n, the power-law index n is larger for blue galaxies (n = 2.7 +- 0.5) than for red galaxies (n = 1.3 +- 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is N_m = 0.57 +- 0.05 for red galaxies and N_m = 0.26 +- 0.02 for blue galaxies. Our new methodology exploits statistically all the available information provided by photometric redshift codes and provides accurate measurements of the merger fraction by close pairs only using photometric redshifts. Current and future photometric surveys will benefit of this new methodology.



rate research

Read More

Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have reliable and tested methods that allow us to properly identify these systems and estimate their total masses and other properties. Aims. In view of the forthcoming Physics of the Accelerating Universe Survey (PAUS) we propose and evaluate the performance of an identification algorithm of projected close isolated galaxy pairs. We expect that the photometric selected systems can adequately reproduce the observational properties and the inferred lensing mass - luminosity relation of a pair of truly bound galaxies that are hosted by the same dark matter halo. Methods. We develop an identification algorithm that considers the projected distance between the galaxies, the projected velocity difference and an isolation criteria in order to restrict the sample to isolated systems. We apply our identification algorithm using a mock galaxy catalog that mimics the features of PAUS. To evaluate the feasibility of our pair finder, we compare the identified photometric samples with a test sample that considers that both members are included in the same halo. Also, taking advantage of the lensing properties provided by the mock catalog, we apply a weak lensing analysis to determine the mass of the selected systems. Results. Photometric selected samples tend to show high purity values, but tend to misidentify truly bounded pairs as the photometric redshift errors increase. Nevertheless, overall properties such as the luminosity and mass distributions are successfully reproduced. We also accurately reproduce the lensing mass - luminosity relation as expected for galaxy pairs located in the same halo.
Our goal is to study the evolution of the $B-$band luminosity function (LF) since $z=1$ using ALHAMBRA data. We used the photometric redshift and the $I-$band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with $Ileq24$ mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift-magnitude-galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also included in our analysis. We modelled the LF with a redshift-dependent Schechter function affected by the same selection effects than the data. The measured ALHAMBRA LF at $0.2leq z<1$ and the evolving Schechter parameters both for quiescent and star-forming galaxies agree with previous results in the literature. The estimated redshift evolution of $M_B^* propto Qz$ is $Q_{rm SF}=-1.03pm0.08$ and $Q_{rm Q}=-0.80pm0.08$, and of $log phi^* propto Pz$ is $P_{rm SF}=-0.01pm0.03$ and $P_{rm Q}=-0.41pm0.05$. The measured faint-end slopes are $alpha_{rm SF}=-1.29pm0.02$ and $alpha_{rm Q}=-0.53pm0.04$. We find a significant population of faint quiescent galaxies, modelled by a second Schechter function with slope $beta=-1.31pm0.11$. We find a factor $2.55pm0.14$ decrease in the luminosity density $j_B$ of star-forming galaxies, and a factor $1.25pm0.16$ increase in the $j_B$ of quiescent ones since $z=1$, confirming the continuous build-up of the quiescent population with cosmic time. The contribution of the faint quiescent population to $j_B$ increases from 3% at $z=1$ to 6% at $z=0$. The developed methodology will be applied to future multi-filter surveys such as J-PAS.
Context. Knowing the exact shape of the UV luminosity function of high-redshift galaxies is important in order to understand the star formation history of the early universe. However, the uncertainties, especially at the faint and bright ends of the LFs, are still significant. Aims. In this paper, we study the UV luminosity function of redshift z = 2.5 - 4.5 galaxies in 2.38 deg^2 of ALHAMBRA data with I <= 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the luminosity function. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods. We use a novel methodology based on redshift and magnitude probability distribution functions (PDFs). This methodology robustly takes into account the uncertainties due to redshift and magnitude errors, shot noise and cosmic variance, and models the luminosity function in two dimensions (z; M_UV ). Results. We find an excess of bright ~ M*_UV galaxies as compared to the studies based on broad-band photometric data. However, our results agree well with the luminosity function of the magnitude-selected spectroscopic VVDS data. We measure high bias values, b ~ 8 - 10, that are compatible with the previous measurements considering the redshifts and magnitudes of our galaxies and further reinforce the real high-redshift nature of our bright galaxies. Conclusions. We call into question the shape of the luminosity function at its bright end; is it a double power-law as suggested by the recent broad-band photometric studies or rather a brighter Schechter function, as suggested by our multi-filter analysis and the spectroscopic VVDS data.
This paper presents the characterization of the optical range of the ALHAMBRA photometric system, a 20 contiguous, equal-width, medium-band CCD system with wavelength coverage from 3500A to 9700A. The photometric description of the system is done by presenting the full response curve as a product of the filters, CCD and atmospheric transmission curves, and using some first and second order moments of this response function. We also introduce the set of standard stars that defines the system, formed by 31 classic spectrophotometric standard stars which have been used in the calibration of other known photometric systems, and 288 stars, flux calibrated homogeneously, from the Next Generation Spectral Library (NGSL). Based on the NGSL, we determine the transformation equations between Sloan Digital Sky Survey (SDSS) ugriz photometry and the ALHAMBRA photometric system, in order to establish some relations between both systems. Finally we develop and discuss a strategy to calculate the photometric zero points of the different pointings in the ALHAMBRA project.
We study the clustering of galaxies as a function of spectral type and redshift in the range $0.35 < z < 1.1$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg$^2$ in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts [$sigma_z < 0.014(1+z)$] down to $I_{AB} < 24$. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range $[0.03,10.0] h^{-1}$ Mpc, allowing us to find a steeper trend for $r_p lesssim 0.2 h^{-1}$ Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا