No Arabic abstract
We propose a generalization of the Bloch sphere representation for arbitrary spin states. It provides a compact and elegant representation of spin density matrices in terms of tensors that share the most important properties of Bloch vectors. Our representation, based on covariant matrices introduced by Weinberg in the context of quantum field theory, allows for a simple parametrization of coherent spin states, and a straightforward transformation of density matrices under local unitary and partial tracing operations. It enables us to provide a criterion for anticoherence, relevant in a broader context such as quantum polarization of light.
We argue that the natural way to generalise a tensor network variational class to a continuous quantum system is to use the Feynman path integral to implement a continuous tensor contraction. This approach is illustrated for the case of a recently introduced class of quantum field states known as continuous matrix-product states (cMPS). As an example of the utility of the path-integral representation we argue that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. An argument that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity is also provided.
The gauge invariance of the evolution equations of tomographic probability distribution functions of quantum particles in an electromagnetic field is illustrated. Explicit expressions for the transformations of ordinary tomograms of states under a gauge transformation of electromagnetic field potentials are obtained. Gauge-independent optical and symplectic tomographic quasi-distributions and tomographic probability distributions of states of quantum system are introduced, and their evolution equations having the Liouville equation in corresponding representations as the classical limit are found.
Quantum operations arise naturally in many fields of quantum information theory and quantum computing. One of the simplest example of quantum operation is the von Neumann-Lueders measurement. Destruction of states in quantum mechanics can be treated as a supplement to the von Neumann-Lueders measurement [P. Caban, J. Rembielinski, K. A. Smolinski and Z. Walczak, J. Phys. A 35, 3265 (2002)]. We show that destruction of states in one-qudit system is a quantum operation by finding its Kraus representation.
Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such non-local fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this work, we propose a way to overcome this challenge. We suggest a method intertwining the optimisation over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalises basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimisation in tensor network methods.
Tensor network states provide successful descriptions of strongly correlated quantum systems with applications ranging from condensed matter physics to cosmology. Any family of tensor network states possesses an underlying entanglement structure given by a graph of maximally entangled states along the edges that identify the indices of the tensors to be contracted. Recently, more general tensor networks have been considered, where the maximally entangled states on edges are replaced by multipartite entangled states on plaquettes. Both the structure of the underlying graph and the dimensionality of the entangled states influence the computational cost of contracting these networks. Using the geometrical properties of entangled states, we provide a method to construct tensor network representations with smaller effective bond dimension. We illustrate our method with the resonating valence bond state on the kagome lattice.