Do you want to publish a course? Click here

Measuring the shock-heating rate in the winds of O stars using X-ray line spectra

103   0   0.0 ( 0 )
 Added by David H. Cohen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new method for using measured X-ray emission line fluxes from O stars to determine the shock-heating rate due to instabilities in their radiation-driven winds. The high densities of these winds means that their embedded shocks quickly cool by local radiative emission, while cooling by expansion should be negligible. Ignoring for simplicity any non-radiative mixing or conductive cooling, the method presented here exploits the idea that the cooling post-shock plasma systematically passes through the temperature characteristic of distinct emission lines in the X-ray spectrum. In this way, the observed flux distribution among these X-ray lines can be used to construct the cumulative probability distribution of shock strengths that a typical wind parcel encounters as it advects through the wind. We apply this new method (Gayley 2014) to Chandra grating spectra from five O stars with X-ray emission indicative of embedded wind shocks in effectively single massive stars. Correcting for wind absorption of the X-ray line emission is a crucial component of our analysis, and we use wind optical depth values derived from X-ray line-profile fitting (Cohen et al. 2014) in order to make that correction. The shock-heating rate results we derive for all the stars are quite similar: the average wind mass element passes through roughly one shock that heats it to at least $10^6$ K as it advects through the wind, and the cumulative distribution of shock strengths is a strongly decreasing function of temperature, consistent with a negative power-law of index $n approx 3$, implying a marginal distribution of shock strengths that scales as $T^{-4}$, and with hints of an even steeper decline or cut-off above $10^7$ K.



rate research

Read More

114 - David H. Cohen 2014
We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blue shifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with H-alpha if clumping factors of f_cl ~ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ~ 1.5 R_star, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wind absorption signatures in their line profiles have at least some X-ray emission that arises from colliding wind shocks with a close binary companion. The one clear exception is zeta Oph, a weak-wind star that appears to simply have a very low mass-loss rate. We also reanalyse the results from the canonical O supergiant zeta Pup, using a solar-metallicity wind opacity model and find Mdot = 1.8 times 10^{-6} M_sun/yr, consistent with recent multi-wavelength determinations.
The aim of this paper is to try to explain the physical origin of the non-thermal electron distribution that is able to form the enhanced intensities of satellite lines in the X-ray line spectra observed during the impulsive phases of some solar flares. Synthetic X-ray line spectra of the distributions composed of the distribution of shock reflected electrons and the background Maxwellian distribution are calculated in the approximation of non-Maxwellian ionization, recombination, excitation and de-excitation rates. The distribution of shock reflected electrons is determined analytically. We found that the distribution of electrons reflected at the nearly-perpendicular shock resembles, at its high-energy part, the so called n-distribution. Therefore it could be able to explain the enhanced intensities of Si XIId satellite lines. However, in the region immediately in front of the shock its effect is small because electrons in background Maxwellian plasma are much more numerous there. Therefore, we propose a model in which the shock reflected electrons propagate to regions with smaller densities and different temperatures. Combining the distribution of the shock-reflected electrons with the Maxwellian distribution having different densities and temperatures we found that spectra with enhanced intensities of the satellite lines are formed at low densities and temperatures of the background plasma when the combined distribution is very similar to the n-distribution also in its low-energy part. In these cases, the distribution of the shock-reflected electrons controls the intensity ratio of the allowed Si XIII and Si XIV lines to the Si XIId satellite lines. The high electron densities of the background plasma reduce the effect of shock-reflected electrons on the composed electron distribution function, which leads to the Maxwellian spectra.
The cluster NGC 3603 hosts some of the most massive stars in the Galaxy. With a modest 50 ks exposure with the Chandra High Energy Grating Spectrometer, we have resolved emission lines in spectra of several of the brightest cluster members which are of WNh and O spectral types. This observation provides our first definitive high-resolution spectra of such stars in this nearby starburst region. The stars studied have broadened X-ray emission lines, some with blue-shifted centroids, and are characteristic of massive stellar winds with terminal velocities around 2000--3000 km/s. X-ray luminosities and plasma temperatures are very high for both the WNh and O stars studied. We conclude that their X-rays are likely the result of colliding winds.
Even in the absence of resolved flares, the corona is heated to several million degrees. However, despite its importance for the structure, dynamics, and evolution of the solar atmosphere, the origin of this heating remains poorly understood. Several observational and theoretical considerations suggest that the heating is driven by small, impulsive energy bursts which could be Parker-style nanoflares (Parker 1988) that arise via reconnection within the tangled and twisted coronal magnetic field. The classical smoking gun (Klimchuk 2009; Cargill et al. 2013) for impulsive heating is the direct detection of widespread hot plasma (T > 6 MK) with a low emission measure. In recent years there has been great progress in the development of Transition Edge Sensor (TES) X-ray microcalorimeters that make them more ideal for studying the Sun. When combined with grazing-incidence focusing optics, they provide direct spectroscopic imaging over a broad energy band (0.5 to 10 keV) combined with extremely impressive energy resolution in small pixels, as low as 0.7 eV (FWHM) at 1.5 keV (Lee 2015), and 1.56 eV (FWHM) at 6 keV (Smith 2012), two orders of magnitude better than the current best traditional solid state photon-counting spectrometers. Decisive observations of the hot plasma associated with nanoflare models of coronal heating can be provided by new solar microcalorimeters. These measurements will cover the most important part of the coronal spectrum for searching for the nanoflare-related hot plasma and will characterize how much nanoflares can heat the corona both in active regions and the quiet Sun. Finally, microcalorimeters will enable to study all of this as a function of time and space in each pixel simultaneously a capability never before available.
This is the third paper in a series aiming at the analysis of nitrogen abundances in O-type stars, to enable further constraints on the early evolution of massive stars. We provide first theoretical predictions for the NIV4058/NIII4640 emission line ratio in dependence of various parameters, and confront them with results from the analysis of a sample of early LMC/SMC O-stars. Stellar and wind parameters are determined by line profile fitting of H/He/N lines, exploiting the helium and nitrogen ionization balance. Corresponding synthetic spectra are calculated using the NLTE atmospheric code FASTWIND. Though there is a monotonic relationship between the emission line ratio and Teff, all other parameters being equal, theoretical predictions indicate additional dependencies, most notably, on the nitrogen abundance. These basic predictions are confirmed by results from atmospheric code CMFGEN. The effective temperatures for the earliest O-stars, inferred from the nitrogen ionization balance, are partly considerably hotter than indicated by previous studies. Consistent with earlier results, effective temperatures increase from supergiants to dwarfs for all spectral types in the LMC. The relation between observed NIV4058/NIII4640 emission line ratio and Teff, for a given luminosity class, turned out to be quite monotonic for our sample stars, and fairly consistent with our model predictions. The scatter within a spectral sub-type is mainly produced by abundance effects. Our findings suggest that the Walborn et al. (2002) classification scheme is able to provide a meaningful relation between spectral type and Teff, provided that it is possible to discriminate for the luminosity class. This might be difficult to achieve in low-Z environments such as the SMC, owing to rather low wind-strengths. According to our predictions, the major bias of the classification scheme is due to nitrogen content.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا