No Arabic abstract
In a (two-type) Wright-Fisher diffusion with directional selection and two-way mutation, let $x$ denote todays frequency of the beneficial type, and given $x$, let $h(x)$ be the probability that, among all individuals of todays population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead [Fearnhead, P., 2002. The common ancestor at a nonneutral locus. J. Appl. Probab. 39, 38-54] and Taylor [Taylor, J. E., 2007. The common ancestor process for a Wright-Fisher diffusion. Electron. J. Probab. 12, 808-847] obtained a series representation for $h(x)$. We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of $h(x)$ and gives them a probabilistic meaning.
Recently, the selection-recombination equation with a single selected site and an arbitrary number of neutral sites was solved by means of the ancestral selection-recombination graph. Here, we introduce a more accessible approach, namely the ancestral initiation graph. The construction is based on a discretisation of the selection-recombination equation. We apply our method to systematically explain a long-standing observation concerning the dynamics of linkage disequilibrium between two neutral loci hitchhiking along with a selected one. In particular, this clarifies the nontrivial dependence on the position of the selected site.
We consider the Moran model in continuous time with two types, mutation, and selection. We concentrate on the ancestral line and its stationary type distribution. Building on work by Fearnhead (J. Appl. Prob. 39 (2002), 38-54) and Taylor (Electron. J. Probab. 12 (2007), 808-847), we characterise this distribution via the fixation probability of the offspring of all individuals of favourable type (regardless of the offsprings types). We concentrate on a finite population and stay with the resulting discrete setting all the way through. This way, we extend previous results and gain new insight into the underlying particle picture.
We reconsider the Moran model in continuous time with population size $N$, two allelic types, and selection. We introduce a new particle representation, which we call the labelled Moran model, and which has the same distribution of type frequencies as the original Moran model, provided the initial values are chosen appropriately. In the new model, individuals are labelled $1,2, dots, N$; neutral resampling events may take place between arbitrary labels, whereas selective events only occur in the direction of increasing labels. With the help of elementary methods only, we not only recover fixation probabilities, but also obtain detailed insight into the number and nature of the selective events that play a role in the fixation process forward in time.
Using graphical methods based on a `lookdown and pruned version of the {em ancestral selection graph}, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from Lenz, Kluth, Baake, and Wakolbinger (Theor. Pop. Biol., 103 (2015), 27-37) to the case of heavy-tailed offspring, directed by a reproduction measure $Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.