The conventional theory of linear network coding (LNC) is only over acyclic networks. Convolutional network coding (CNC) applies to all networks. It is also a form of LNC, but the linearity is w.r.t. the ring of rational power series rather than the field of data symbols. CNC has been generalized to LNC w.r.t. any discrete valuation ring (DVR) in order for flexibility in applications. For a causal DVR-based code, all possible source-generated messages form a free module, while incoming coding vectors to a receiver span the emph{received submodule}. An existing emph{time-invariant decoding} algorithm is at a delay equal to the largest valuation among all invariant factors of the received submodule. This intrinsic algebraic attribute is herein proved to be the optimal decoding delay. Meanwhile, emph{time-variant decoding} is formulated. The meaning of time-invariant decoding delay gets a new interpretation through being a special case of the time-variant counterpart. The optimal delay turns out to be the same for time-variant decoding, but the decoding algorithm is more flexible in terms of decodability check and decoding matrix design. All results apply, in particular, to CNC.