No Arabic abstract
The conventional theory of linear network coding (LNC) is only over acyclic networks. Convolutional network coding (CNC) applies to all networks. It is also a form of LNC, but the linearity is w.r.t. the ring of rational power series rather than the field of data symbols. CNC has been generalized to LNC w.r.t. any discrete valuation ring (DVR) in order for flexibility in applications. For a causal DVR-based code, all possible source-generated messages form a free module, while incoming coding vectors to a receiver span the emph{received submodule}. An existing emph{time-invariant decoding} algorithm is at a delay equal to the largest valuation among all invariant factors of the received submodule. This intrinsic algebraic attribute is herein proved to be the optimal decoding delay. Meanwhile, emph{time-variant decoding} is formulated. The meaning of time-invariant decoding delay gets a new interpretation through being a special case of the time-variant counterpart. The optimal delay turns out to be the same for time-variant decoding, but the decoding algorithm is more flexible in terms of decodability check and decoding matrix design. All results apply, in particular, to CNC.
A framework for linear-programming (LP) decoding of nonbinary linear codes over rings is developed. This framework facilitates linear-programming based reception for coded modulation systems which use direct modulation mapping of coded symbols. It is proved that the resulting LP decoder has the maximum-likelihood certificate property. It is also shown that the decoder output is the lowest cost pseudocodeword. Equivalence between pseudocodewords of the linear program and pseudocodewords of graph covers is proved. It is also proved that if the modulator-channel combination satisfies a particular symmetry condition, the codeword error rate performance is independent of the transmitted codeword. Two alternative polytopes for use with linear-programming decoding are studied, and it is shown that for many classes of codes these polytopes yield a complexity advantage for decoding. These polytope representations lead to polynomial-time decoders for a wide variety of classical nonbinary linear codes. LP decoding performance is illustrated for the [11,6] ternary Golay code with ternary PSK modulation over AWGN, and in this case it is shown that the performance of the LP decoder is comparable to codeword-error-rate-optimum hard-decision based decoding. LP decoding is also simulated for medium-length ternary and quaternary LDPC codes with corresponding PSK modulations over AWGN.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
A Viterbi-like decoding algorithm is proposed in this paper for generalized convolutional network error correction coding. Different from classical Viterbi algorithm, our decoding algorithm is based on minimum error weight rather than the shortest Hamming distance between received and sent sequences. Network errors may disperse or neutralize due to network transmission and convolutional network coding. Therefore, classical decoding algorithm cannot be employed any more. Source decoding was proposed by multiplying the inverse of network transmission matrix, where the inverse is hard to compute. Starting from the Maximum A Posteriori (MAP) decoding criterion, we find that it is equivalent to the minimum error weight under our model. Inspired by Viterbi algorithm, we propose a Viterbi-like decoding algorithm based on minimum error weight of combined error vectors, which can be carried out directly at sink nodes and can correct any network errors within the capability of convolutional network error correction codes (CNECC). Under certain situations, the proposed algorithm can realize the distributed decoding of CNECC.
Polar codes are a class of linear block codes that provably achieves channel capacity, and have been selected as a coding scheme for $5^{rm th}$ generation wireless communication standards. Successive-cancellation (SC) decoding of polar codes has mediocre error-correction performance on short to moderate codeword lengths: the SC-Flip decoding algorithm is one of the solutions that have been proposed to overcome this issue. On the other hand, SC-Flip has a higher implementation complexity compared to SC due to the required log-likelihood ratio (LLR) selection and sorting process. Moreover, it requires a high number of iterations to reach good error-correction performance. In this work, we propose two techniques to improve the SC-Flip decoding algorithm for low-rate codes, based on the observation of channel-induced error distributions. The first one is a fixed index selection (FIS) scheme to avoid the substantial implementation cost of LLR selection and sorting with no cost on error-correction performance. The second is an enhanced index selection (EIS) criterion to improve the error-correction performance of SC-Flip decoding. A reduction of $24.6%$ in the implementation cost of logic elements is estimated with the FIS approach, while simulation results show that EIS leads to an improvement on error-correction performance improvement up to $0.42$ dB at a target FER of $10^{-4}$.
Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence repetition node corresponding to a particular class of bit sequences. Most existing special node types are special cases of the proposed sequence repetition node. Then, a fast parallel decoder is proposed for this class of node. To further speed up the decoding process of general nodes outside this class, a threshold-based hard-decision-aided scheme is introduced. The threshold value that guarantees a given error-correction performance in the proposed scheme is derived theoretically. Analysis and hardware implementation results on a polar code of length $1024$ with code rates $1/4$, $1/2$, and $3/4$ show that our proposed algorithm reduces the required clock cycles by up to $8%$, and leads to a $10%$ improvement in the maximum operating frequency compared to state-of-the-art decoders without tangibly altering the error-correction performance. In addition, using the proposed threshold-based hard-decision-aided scheme, the decoding latency can be further reduced by $57%$ at $mathrm{E_b}/mathrm{N_0} = 5.0$~dB.