No Arabic abstract
The geomagnetic superstorm of 20 November 2003 with Dst = -422 nT, one of the most intense in history, is not well understood. The superstorm was caused by a moderate solar eruptive event on 18 November, comprehensively studied in our preceding Papers I-III. The analysis has shown a number of unusual and extremely complex features, which presumably led to the formation of an isolated right-handed magnetic-field configuration. Here we analyze the interplanetary disturbance responsible for the 20 November superstorm, compare some of its properties with the extreme 28-29 October event, and reveal a compact size of the magnetic cloud (MC) and its disconnection from the Sun. Most likely, the MC had a spheromak configuration and expanded in a narrow angle of < 14 degree. A very strong magnetic field in the MC up to 56 nT was due to the unusually weak expansion of the disconnected spheromak in an enhanced-density environment constituted by the tails of the preceding ICMEs. Additional circumstances favoring the superstorm were (i) the exact impact of the spheromak on the Earths magnetosphere and (ii) the almost exact southward orientation of the magnetic field, corresponding to the original orientation in its probable source region near the solar disk center.
This is the first of four companion papers, which analyze a complex eruptive event of 18 November 2003 in AR 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a CME. The chain of events was as follows: i) an eruption at 07:29 accompanied by a not reported M1.2 class flare associated with the onset of a first southeastern CME1, which is not responsible for the superstorm; ii) a confined eruption at 07:41 (M3.2 flare) that destabilized the filament; iii) the filament acceleration (07:56); iv) the bifurcation of the eruptive filament that transformed into a large cloud; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to its interaction with the magnetic field in the neighborhood of a null point, located at a height of about 100 Mm above the complex formed by ARs 10501, 10503, and their environment. The CORONAS-F/SPIRIT telescope observed the cloud in 304 A as a large Y-shaped darkening, which moved from the bifurcation region to the limb. The masses and kinematics of the cloud and the filament were similar. Remnants of the filament were not observed in the second southwestern CME2, previously regarded as a source of the 20 November superstorm. These facts do not support a simple scenario, in which the interplanetary magnetic cloud is considered as a flux rope formed from a structure initially associated with the pre-eruption filament in AR 10501. Observations suggest a possible additional eruption above the bifurcation region close to solar disk center between 08:07 and 08:17 that could be the source of the superstorm.
We continue our study (Grechnev et al. (2013), doi:10.1007/s11207-013-0316-6; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07 - 08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earths magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with EUV waves and dynamic radio spectra up to decameters.
Our analysis in Papers I and II (Grechnev et al., 2014, Solar Phys. 289, 289 and 1279) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys., submitted), which concludes about its probable spheromak-like structure. The present paper confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic dipole constituted by dimmed regions with the opposite magnetic polarities away from the parent active region corresponded to the direction of the axial field in the magnetic cloud, while the pre-eruptive filament mismatched it. To combine all of the listed findings, we come to an intrinsically three-dimensional scheme, in which a spheromak-like eruption originates via the interaction of the initially unconnected magnetic fluxes of the eruptive filament and pre-existing ones in the corona. Through a chain of magnetic reconnections their positive mutual helicity was transformed into the self-helicity of the spheromak-like magnetic cloud.
We have found an interesting event registered by the solar neutron telescopes installed at high mountains in Bolivia (5250 m a.s.l.) and Mexico (4600 m a.s.l.). The event was observed November 7th of 2004 in association with a large solar flare of magnitude X2.0. Some features in our registers and in two satellites (GOES 11 and SOHO) reveal the presence of electrons and protons as possible products of neutron decay. Solar neutron decay protons (sndp) were recorded on board ISEE3 satellite in June 3rd, 1982 . On October 19th, 1989, the ground level detectors installed in Goose Bay and Deep River revealed the registration of solar neutron decay protons (sndp). Therefore this is the second example that such an evidence is registered on the Earths surface.
One of the major unsolved problems in Solar Physics is that of CME initiation. In this paper, we have studied the initiation of a flare associated CME which occurred on 2010 November 03 using multi-wavelength observations recorded by Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We report an observation of an inflow structure initially in 304~{AA} and in 1600~{AA} images, a few seconds later. This inflow strucure was detected as one of the legs of the CME. We also observed a non-thermal compact source concurrent and near co-spatial with the brightening and movement of the inflow structure. The appearance of this compact non-thermal source, brightening and movement of the inflow structure and the subsequent outward movement of the CME structure in the corona led us to conclude that the CME initiation was caused by magnetic reconnection.